Abstract

We have characterized the intermodulation distortion and compression properties of an integrated optical modulator at microwave frequencies by measuring the third-order intercept and 1-dB compression points. Values of +30.0 and +21.4 dBm, respectively, were measured and agree well with theory. When operated in the shot-noise-limited regime, these devices can have spurious free dynamic ranges in excess of 100 dB, making them attractive as potential alternatives to conventional diode mixers in special applications.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. H. Kolner, D. M. Bloom, “Electro-optic Sampling in GaAs Integrated Circuits,” IEEE J. Quantum Electron. QE-22, 79 (1986).
    [CrossRef]
  2. S. K. Korotky, G. Eisenstein, R. S. Tucker, J. J. Veselka, G. Raybon, in Technical Digest, Topical Meeting on Picosecond Optics and Optoelectronics (Optical Society of America, Washington, DC, 1987), paper FB4-1.
  3. C. H. Bulmer, W. K. Burns, “Linear Interferometric Modulators in Ti:LiNbO3,” IEEE/OSA J. Lightwave Technol. LT-2, 512 (1984).
    [CrossRef]
  4. Mixer Application Information, RF Signal Processing Components (Watkins Johnson Co., Palo Alto, CA, 1985).
  5. Mixer Applications Handbook, (Mini Circuits Laboratory, Brooklyn, NY, 1985).
  6. M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions. (U.S. GPO, Washington, DC, 1972).
  7. D. W. Dolfi, “Traveling Wave 1.3-μm Interferometer Modulator with High Bandwidth, Low Drive Power, and Low Loss,” Appl. Opt. 25, 2479 (1986). The higher value of Vπ in the present device results primarily from the presence of a 150-nm thick SiO2 buffer layer.
    [CrossRef] [PubMed]
  8. S. Y. Wang, K. W. Carey, B. H. Kolner, “A Front-Side-Illuminated InP/GaInAs/InP p-i-n Photodiode with −3 dB Bandwidth in Excess of 18 GHz,” IEEE Trans. Electron Devices ED-34, 938 (1987).
    [CrossRef]

1987 (1)

S. Y. Wang, K. W. Carey, B. H. Kolner, “A Front-Side-Illuminated InP/GaInAs/InP p-i-n Photodiode with −3 dB Bandwidth in Excess of 18 GHz,” IEEE Trans. Electron Devices ED-34, 938 (1987).
[CrossRef]

1986 (2)

1984 (1)

C. H. Bulmer, W. K. Burns, “Linear Interferometric Modulators in Ti:LiNbO3,” IEEE/OSA J. Lightwave Technol. LT-2, 512 (1984).
[CrossRef]

Abramowitz, M.

M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions. (U.S. GPO, Washington, DC, 1972).

Bloom, D. M.

B. H. Kolner, D. M. Bloom, “Electro-optic Sampling in GaAs Integrated Circuits,” IEEE J. Quantum Electron. QE-22, 79 (1986).
[CrossRef]

Bulmer, C. H.

C. H. Bulmer, W. K. Burns, “Linear Interferometric Modulators in Ti:LiNbO3,” IEEE/OSA J. Lightwave Technol. LT-2, 512 (1984).
[CrossRef]

Burns, W. K.

C. H. Bulmer, W. K. Burns, “Linear Interferometric Modulators in Ti:LiNbO3,” IEEE/OSA J. Lightwave Technol. LT-2, 512 (1984).
[CrossRef]

Carey, K. W.

S. Y. Wang, K. W. Carey, B. H. Kolner, “A Front-Side-Illuminated InP/GaInAs/InP p-i-n Photodiode with −3 dB Bandwidth in Excess of 18 GHz,” IEEE Trans. Electron Devices ED-34, 938 (1987).
[CrossRef]

Dolfi, D. W.

Eisenstein, G.

S. K. Korotky, G. Eisenstein, R. S. Tucker, J. J. Veselka, G. Raybon, in Technical Digest, Topical Meeting on Picosecond Optics and Optoelectronics (Optical Society of America, Washington, DC, 1987), paper FB4-1.

Kolner, B. H.

S. Y. Wang, K. W. Carey, B. H. Kolner, “A Front-Side-Illuminated InP/GaInAs/InP p-i-n Photodiode with −3 dB Bandwidth in Excess of 18 GHz,” IEEE Trans. Electron Devices ED-34, 938 (1987).
[CrossRef]

B. H. Kolner, D. M. Bloom, “Electro-optic Sampling in GaAs Integrated Circuits,” IEEE J. Quantum Electron. QE-22, 79 (1986).
[CrossRef]

Korotky, S. K.

S. K. Korotky, G. Eisenstein, R. S. Tucker, J. J. Veselka, G. Raybon, in Technical Digest, Topical Meeting on Picosecond Optics and Optoelectronics (Optical Society of America, Washington, DC, 1987), paper FB4-1.

Raybon, G.

S. K. Korotky, G. Eisenstein, R. S. Tucker, J. J. Veselka, G. Raybon, in Technical Digest, Topical Meeting on Picosecond Optics and Optoelectronics (Optical Society of America, Washington, DC, 1987), paper FB4-1.

Stegun, I. A.

M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions. (U.S. GPO, Washington, DC, 1972).

Tucker, R. S.

S. K. Korotky, G. Eisenstein, R. S. Tucker, J. J. Veselka, G. Raybon, in Technical Digest, Topical Meeting on Picosecond Optics and Optoelectronics (Optical Society of America, Washington, DC, 1987), paper FB4-1.

Veselka, J. J.

S. K. Korotky, G. Eisenstein, R. S. Tucker, J. J. Veselka, G. Raybon, in Technical Digest, Topical Meeting on Picosecond Optics and Optoelectronics (Optical Society of America, Washington, DC, 1987), paper FB4-1.

Wang, S. Y.

S. Y. Wang, K. W. Carey, B. H. Kolner, “A Front-Side-Illuminated InP/GaInAs/InP p-i-n Photodiode with −3 dB Bandwidth in Excess of 18 GHz,” IEEE Trans. Electron Devices ED-34, 938 (1987).
[CrossRef]

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

B. H. Kolner, D. M. Bloom, “Electro-optic Sampling in GaAs Integrated Circuits,” IEEE J. Quantum Electron. QE-22, 79 (1986).
[CrossRef]

IEEE Trans. Electron Devices (1)

S. Y. Wang, K. W. Carey, B. H. Kolner, “A Front-Side-Illuminated InP/GaInAs/InP p-i-n Photodiode with −3 dB Bandwidth in Excess of 18 GHz,” IEEE Trans. Electron Devices ED-34, 938 (1987).
[CrossRef]

IEEE/OSA J. Lightwave Technol. (1)

C. H. Bulmer, W. K. Burns, “Linear Interferometric Modulators in Ti:LiNbO3,” IEEE/OSA J. Lightwave Technol. LT-2, 512 (1984).
[CrossRef]

Other (4)

Mixer Application Information, RF Signal Processing Components (Watkins Johnson Co., Palo Alto, CA, 1985).

Mixer Applications Handbook, (Mini Circuits Laboratory, Brooklyn, NY, 1985).

M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions. (U.S. GPO, Washington, DC, 1972).

S. K. Korotky, G. Eisenstein, R. S. Tucker, J. J. Veselka, G. Raybon, in Technical Digest, Topical Meeting on Picosecond Optics and Optoelectronics (Optical Society of America, Washington, DC, 1987), paper FB4-1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

General behavior of first- and third-order mixing terms J0(πυ/Vπ)J1(πυ/Vπ) and J1(πυ/Vπ)J2(πυ/Vπ) for two equal amplitude inputs to an electrooptic interferometer modulator as a function of drive voltage υ (0 dBV π υ = Vπ/2).

Fig. 2
Fig. 2

(A) Experimental arrangement for measurement of the third-order intercept point of an electrooptic modulator; (B) source arrangement for measuring the 1-dB compression point; LD = laser diode; MOD = modulator; PD = photodiode.

Fig. 3
Fig. 3

Transmission responses of microwave filters used in the experiment shown in Fig. 2. Frequencies f1 and f2 are the fundamentals generated in the synthesizers. The filter at frequency f3 isolates the third-order intermodulation term 2f2f1 at the input of the spectrum analyzer.

Fig. 4
Fig. 4

Fundamental and third-order response of an integrated optical modulator. Lines of slope +1 and +3 drawn through data points intersect at +30 dBm, which is the input third-order intercept point.

Fig. 5
Fig. 5

Response of an integrated optical modulator showing compression of the first-order term (data points). Bessel function J1(x) fitted to data points. Straight line approximation to the small signal behavior indicates a 1-dB compression point of +21.4 dBm.

Fig. 6
Fig. 6

Spurious-free and maximum usable dynamic range defined in terms of fundamental and third-order output and receiver shot noise floor.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

i ( t ) = I ( t ) R 2 { 1 cos [ Γ 0 + π V π υ ( t ) ] } ,
cos [ Γ 0 + π V π ( υ 1 sin ω 1 t + υ 2 sin ω 2 t ) ] = Re { exp ( j Γ 0 ) n m J n ( π υ 1 V π ) J m ( π υ 2 V π ) exp [ j ( n ω 1 + m ω 2 ) t ] } n , m = 0 , ± 1 , ± 2 , ,
cos [ Γ 0 + π V π ( υ 1 sin ω 1 t + υ 2 sin ω 2 t ) ] = { cos Γ 0 J 0 ( π υ 1 V π ) J 0 ( π υ 2 V π ) n = m = 0 ( ± 1 ) n 2 cos Γ 0 J n ( π υ 1 V π ) J m ( π υ 2 V π ) cos ( n ω 1 ± m ω 2 ) t n + m even ( ± 1 ) n + 1 2 sin Γ 0 J n ( π υ 1 V π ) J m ( π υ 2 V π ) sin ( n ω 1 ± m ω 2 ) t n + m odd n , m 0
J 0 ( π υ 2 / V π ) J 1 ( π υ 1 / V π ) = J 1 ( π υ 1 / V π ) J 2 ( π υ 2 / V π )
υ TOI = 2 2 V π π ,
υ 1 dB = V π π ,
V min = 2 V π π qB i avg
V MSF = 2 4 / 3 V π π ( qB i avg ) 1 / 6 .
SFDR = V MSF V min = ( 2 i avg qB ) 1 / 3 .
MDUR = υ 1 dB V min = 1 2 i avg qB .
= Γ 0 π 2 1 ± 2 2 / 3 ( i avg qB ) 1 / 6 ,

Metrics