Abstract

This paper describes photochemical effects observed using 226-nm two-photon-excited fluorescence detection to measure the atomic oxygen concentration in hydrogen-oxygen flames. In a study of a lean atmospheric-pressure flame, we observed artificially high atomic-oxygen concentration levels in the postflame gases using all but the most gentle excitation conditions (intensities greater than ∼0.1 GW/cm2). A similar study of a lean low-pressure (72-Torr) flame showed little evidence of photochemical production of atomic oxygen. Using a second laser system in a pump-probe configuration, with the probe laser monitoring the atomic oxygen concentration in a very lean flame while the pump laser was scanned across molecular-oxygen Schumann-Runge bands at 221 nm, we demonstrated that excess atomic oxygen concentrations can be produced by single-photon excitation of these bands in vibrationally excited oxygen molecules present in the flame. This production mechanism explains at least part of the artificially high concentration levels observed in the atmospheric-pressure flame.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. M. Goldsmith, N. M. Laurendeau, “Two-Photon-Excited Fluorescence Measurements of OH Concentration in a Hydrogen-Oxygen Flame,” Appl. Opt. 25, 276 (1986) and references therein.
    [CrossRef] [PubMed]
  2. A. C. Eckbreth, “Effects of Laser-Modulated Particulate Incandescence on Raman Scattering Diagnostics,” J. Appl. Phys. 48, 4473 (1977).
    [CrossRef]
  3. A. C. Eckbreth, R. J. Hall, “CARS Thermometry in a Sooting Flame,” Combust. Flame 36, 87 (1979).
    [CrossRef]
  4. D. A. Greenhalgh, “RECLAS: Resonant-Enhanced CARS from C2 Produced by Laser Ablation of Soot Particles,” Appl. Opt. 22, 1128 (1983).
    [CrossRef] [PubMed]
  5. M. Aldén, H. Edner, S. Svanberg, “Simultaneous, Spatially Resolved Monitoring of C2 and OH in a C2H2/O2 Flame Using a Diode Array Detector,” Appl. Phys. B 29, 93 (1982).
    [CrossRef]
  6. M. Aldén, S. Wallin, W. Wendt, “Applications of Two-Photon Absorption for Detection of CO in Combustion Gases,” Appl. Phys. B 33, 205 (1984).
    [CrossRef]
  7. K. C. Smyth, J. H. Miller, R. C. Dorfman, W. G. Mallard, R. J. Santoro, “Soot Inception in a Methane/Air Diffusion Flame as Characterized by Detailed Species Profiles,” Combust. Flame 62, 157 (1985).
    [CrossRef]
  8. R. W. Dibble, Sandia National Laboratories; private communication.
  9. A. W. Miziolek, M. A. DeWilde, “Multiphoton Photochemical and Collisional Effects During Oxygen–Atom Flame Detection,” Opt. Lett. 9, 390 (1984).
    [CrossRef] [PubMed]
  10. B. E. Forch, A. W. Miziolek, “Ultraviolet Laser Ignition of Premixed Gases by Efficient and Resonant Multiphoton Photochemical Formation of Microplasmas,” Combust. Sci. Technol. 52, 151 (1987).
    [CrossRef]
  11. R. P. Lucht, J. T. Salmon, G. B. King, D. W. Sweeney, N. M. Laurendeau, “Two-Photon-Excited Fluorescence Measurement of Hydrogen Atoms in Flames,” Opt. Lett. 8, 365 (1983).
    [CrossRef] [PubMed]
  12. J. E. M. Goldsmith, “Photochemical Effects in 205-nm, Two-Photon-Excited Fluorescence Detection of Atomic Hydrogen in Flames,” Opt. Lett. 11, 416 (1986).
    [CrossRef] [PubMed]
  13. C. J. Dasch, J. H. Bechtel, “Spontaneous Raman Scattering by Ground-State Oxygen Atoms,” Opt. Lett. 6, 36 (1981).
    [CrossRef] [PubMed]
  14. R. E. Teets, J. H. Bechtel, “Coherent Anti-Stokes Raman Spectra of Oxygen Atoms in Flames,” Opt. Lett. 6, 458 (1981).
    [CrossRef] [PubMed]
  15. M. Aldén, H. Edner, P. Grafström, S. Svanberg, “Two-Photon Excitation of Atomic Oxygen in a Flame,” Opt. Commun. 42, 244 (1982).
    [CrossRef]
  16. J. E. M. Goldsmith, “Resonant Multiphoton Optogalvanic Detection of Atomic Oxygen in Flames,” J. Chem. Phys. 78, 1610 (1983).
    [CrossRef]
  17. This burner was purchased from McKenna Products, Pittsburg, CA 94565.
  18. J. E. M. Goldsmith, “Flame Studies of Atomic Hydrogen and Oxygen Using Resonant Multiphoton Optogalvanic Spectroscopy,” in Twentieth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, PA, 1984), pp. 1331–1337.
  19. J. E. M. Goldsmith, R. J. M. Anderson, “Laser-Induced Fluorescence Spectroscopy and Imaging of Molecular Oxygen in Flames,” Opt. Lett. 11, 67 (1986).
    [CrossRef] [PubMed]
  20. B. R. Lewis, J. H. Carver, T. I. Hobbs, D. G. McCoy, H. P. F. Gies, “Rotational Variation of Predissociation Linewidths for the Schumann-Runge Bands of Molecular Oxygen,” J. Quant. Spectrosc. Radiat. Transfer 22, 213 (1979) and reference therein.
    [CrossRef]
  21. U. Meier, K. Kohse-Hoinghaus, T. Just, “H and O Atom Detection for Combustion Applications: Study of Quenching and Laser Photolysis Effects,” Chem. Phys. Lett. 126, 567 (1986).
    [CrossRef]
  22. J. T. Salmon, N. M. Laurendeau, “Absolute Concentration Measurements of Atomic Hydrogen in Subatmospheric Premixed H2/O2/N2 Flat Flames with Photoionization Controlled-Loss Spectroscopy,” Appl. Opt. (accepted for publication).
  23. R. J. Kee, J. F. Grcar, M. D. Smooke, J. A. Miller, “A Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames,” Report SAND85-8240, Sandia National Laboratories, Livermore, CA (Dec.1985).
  24. J. A. Miller, M. C. Branch, W. J. McLean, D. W. Chandler, M. D. Smooke, R. J. Kee, “The Conversion of HCN to NO and N2 in H2-O2-HCN-Ar Flames at Low Pressure,” in Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1984), pp. 673–684.
  25. N. M. Laurendeau, J. E. M. Goldsmith, “Comparison of Laser-Induced Fluorescence Methods for Measurements of Hydroxyl Concentration in Flames,” Appl. Opt. (to be submitted).
  26. A. W. Miziolek, Aberdeen Proving Ground; private communication.

1987 (1)

B. E. Forch, A. W. Miziolek, “Ultraviolet Laser Ignition of Premixed Gases by Efficient and Resonant Multiphoton Photochemical Formation of Microplasmas,” Combust. Sci. Technol. 52, 151 (1987).
[CrossRef]

1986 (4)

1985 (1)

K. C. Smyth, J. H. Miller, R. C. Dorfman, W. G. Mallard, R. J. Santoro, “Soot Inception in a Methane/Air Diffusion Flame as Characterized by Detailed Species Profiles,” Combust. Flame 62, 157 (1985).
[CrossRef]

1984 (2)

M. Aldén, S. Wallin, W. Wendt, “Applications of Two-Photon Absorption for Detection of CO in Combustion Gases,” Appl. Phys. B 33, 205 (1984).
[CrossRef]

A. W. Miziolek, M. A. DeWilde, “Multiphoton Photochemical and Collisional Effects During Oxygen–Atom Flame Detection,” Opt. Lett. 9, 390 (1984).
[CrossRef] [PubMed]

1983 (3)

1982 (2)

M. Aldén, H. Edner, P. Grafström, S. Svanberg, “Two-Photon Excitation of Atomic Oxygen in a Flame,” Opt. Commun. 42, 244 (1982).
[CrossRef]

M. Aldén, H. Edner, S. Svanberg, “Simultaneous, Spatially Resolved Monitoring of C2 and OH in a C2H2/O2 Flame Using a Diode Array Detector,” Appl. Phys. B 29, 93 (1982).
[CrossRef]

1981 (2)

1979 (2)

A. C. Eckbreth, R. J. Hall, “CARS Thermometry in a Sooting Flame,” Combust. Flame 36, 87 (1979).
[CrossRef]

B. R. Lewis, J. H. Carver, T. I. Hobbs, D. G. McCoy, H. P. F. Gies, “Rotational Variation of Predissociation Linewidths for the Schumann-Runge Bands of Molecular Oxygen,” J. Quant. Spectrosc. Radiat. Transfer 22, 213 (1979) and reference therein.
[CrossRef]

1977 (1)

A. C. Eckbreth, “Effects of Laser-Modulated Particulate Incandescence on Raman Scattering Diagnostics,” J. Appl. Phys. 48, 4473 (1977).
[CrossRef]

Aldén, M.

M. Aldén, S. Wallin, W. Wendt, “Applications of Two-Photon Absorption for Detection of CO in Combustion Gases,” Appl. Phys. B 33, 205 (1984).
[CrossRef]

M. Aldén, H. Edner, S. Svanberg, “Simultaneous, Spatially Resolved Monitoring of C2 and OH in a C2H2/O2 Flame Using a Diode Array Detector,” Appl. Phys. B 29, 93 (1982).
[CrossRef]

M. Aldén, H. Edner, P. Grafström, S. Svanberg, “Two-Photon Excitation of Atomic Oxygen in a Flame,” Opt. Commun. 42, 244 (1982).
[CrossRef]

Anderson, R. J. M.

Bechtel, J. H.

Branch, M. C.

J. A. Miller, M. C. Branch, W. J. McLean, D. W. Chandler, M. D. Smooke, R. J. Kee, “The Conversion of HCN to NO and N2 in H2-O2-HCN-Ar Flames at Low Pressure,” in Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1984), pp. 673–684.

Carver, J. H.

B. R. Lewis, J. H. Carver, T. I. Hobbs, D. G. McCoy, H. P. F. Gies, “Rotational Variation of Predissociation Linewidths for the Schumann-Runge Bands of Molecular Oxygen,” J. Quant. Spectrosc. Radiat. Transfer 22, 213 (1979) and reference therein.
[CrossRef]

Chandler, D. W.

J. A. Miller, M. C. Branch, W. J. McLean, D. W. Chandler, M. D. Smooke, R. J. Kee, “The Conversion of HCN to NO and N2 in H2-O2-HCN-Ar Flames at Low Pressure,” in Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1984), pp. 673–684.

Dasch, C. J.

DeWilde, M. A.

Dibble, R. W.

R. W. Dibble, Sandia National Laboratories; private communication.

Dorfman, R. C.

K. C. Smyth, J. H. Miller, R. C. Dorfman, W. G. Mallard, R. J. Santoro, “Soot Inception in a Methane/Air Diffusion Flame as Characterized by Detailed Species Profiles,” Combust. Flame 62, 157 (1985).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, R. J. Hall, “CARS Thermometry in a Sooting Flame,” Combust. Flame 36, 87 (1979).
[CrossRef]

A. C. Eckbreth, “Effects of Laser-Modulated Particulate Incandescence on Raman Scattering Diagnostics,” J. Appl. Phys. 48, 4473 (1977).
[CrossRef]

Edner, H.

M. Aldén, H. Edner, S. Svanberg, “Simultaneous, Spatially Resolved Monitoring of C2 and OH in a C2H2/O2 Flame Using a Diode Array Detector,” Appl. Phys. B 29, 93 (1982).
[CrossRef]

M. Aldén, H. Edner, P. Grafström, S. Svanberg, “Two-Photon Excitation of Atomic Oxygen in a Flame,” Opt. Commun. 42, 244 (1982).
[CrossRef]

Forch, B. E.

B. E. Forch, A. W. Miziolek, “Ultraviolet Laser Ignition of Premixed Gases by Efficient and Resonant Multiphoton Photochemical Formation of Microplasmas,” Combust. Sci. Technol. 52, 151 (1987).
[CrossRef]

Gies, H. P. F.

B. R. Lewis, J. H. Carver, T. I. Hobbs, D. G. McCoy, H. P. F. Gies, “Rotational Variation of Predissociation Linewidths for the Schumann-Runge Bands of Molecular Oxygen,” J. Quant. Spectrosc. Radiat. Transfer 22, 213 (1979) and reference therein.
[CrossRef]

Goldsmith, J. E. M.

J. E. M. Goldsmith, “Photochemical Effects in 205-nm, Two-Photon-Excited Fluorescence Detection of Atomic Hydrogen in Flames,” Opt. Lett. 11, 416 (1986).
[CrossRef] [PubMed]

J. E. M. Goldsmith, N. M. Laurendeau, “Two-Photon-Excited Fluorescence Measurements of OH Concentration in a Hydrogen-Oxygen Flame,” Appl. Opt. 25, 276 (1986) and references therein.
[CrossRef] [PubMed]

J. E. M. Goldsmith, R. J. M. Anderson, “Laser-Induced Fluorescence Spectroscopy and Imaging of Molecular Oxygen in Flames,” Opt. Lett. 11, 67 (1986).
[CrossRef] [PubMed]

J. E. M. Goldsmith, “Resonant Multiphoton Optogalvanic Detection of Atomic Oxygen in Flames,” J. Chem. Phys. 78, 1610 (1983).
[CrossRef]

N. M. Laurendeau, J. E. M. Goldsmith, “Comparison of Laser-Induced Fluorescence Methods for Measurements of Hydroxyl Concentration in Flames,” Appl. Opt. (to be submitted).

J. E. M. Goldsmith, “Flame Studies of Atomic Hydrogen and Oxygen Using Resonant Multiphoton Optogalvanic Spectroscopy,” in Twentieth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, PA, 1984), pp. 1331–1337.

Grafström, P.

M. Aldén, H. Edner, P. Grafström, S. Svanberg, “Two-Photon Excitation of Atomic Oxygen in a Flame,” Opt. Commun. 42, 244 (1982).
[CrossRef]

Grcar, J. F.

R. J. Kee, J. F. Grcar, M. D. Smooke, J. A. Miller, “A Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames,” Report SAND85-8240, Sandia National Laboratories, Livermore, CA (Dec.1985).

Greenhalgh, D. A.

Hall, R. J.

A. C. Eckbreth, R. J. Hall, “CARS Thermometry in a Sooting Flame,” Combust. Flame 36, 87 (1979).
[CrossRef]

Hobbs, T. I.

B. R. Lewis, J. H. Carver, T. I. Hobbs, D. G. McCoy, H. P. F. Gies, “Rotational Variation of Predissociation Linewidths for the Schumann-Runge Bands of Molecular Oxygen,” J. Quant. Spectrosc. Radiat. Transfer 22, 213 (1979) and reference therein.
[CrossRef]

Just, T.

U. Meier, K. Kohse-Hoinghaus, T. Just, “H and O Atom Detection for Combustion Applications: Study of Quenching and Laser Photolysis Effects,” Chem. Phys. Lett. 126, 567 (1986).
[CrossRef]

Kee, R. J.

J. A. Miller, M. C. Branch, W. J. McLean, D. W. Chandler, M. D. Smooke, R. J. Kee, “The Conversion of HCN to NO and N2 in H2-O2-HCN-Ar Flames at Low Pressure,” in Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1984), pp. 673–684.

R. J. Kee, J. F. Grcar, M. D. Smooke, J. A. Miller, “A Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames,” Report SAND85-8240, Sandia National Laboratories, Livermore, CA (Dec.1985).

King, G. B.

Kohse-Hoinghaus, K.

U. Meier, K. Kohse-Hoinghaus, T. Just, “H and O Atom Detection for Combustion Applications: Study of Quenching and Laser Photolysis Effects,” Chem. Phys. Lett. 126, 567 (1986).
[CrossRef]

Laurendeau, N. M.

J. E. M. Goldsmith, N. M. Laurendeau, “Two-Photon-Excited Fluorescence Measurements of OH Concentration in a Hydrogen-Oxygen Flame,” Appl. Opt. 25, 276 (1986) and references therein.
[CrossRef] [PubMed]

R. P. Lucht, J. T. Salmon, G. B. King, D. W. Sweeney, N. M. Laurendeau, “Two-Photon-Excited Fluorescence Measurement of Hydrogen Atoms in Flames,” Opt. Lett. 8, 365 (1983).
[CrossRef] [PubMed]

J. T. Salmon, N. M. Laurendeau, “Absolute Concentration Measurements of Atomic Hydrogen in Subatmospheric Premixed H2/O2/N2 Flat Flames with Photoionization Controlled-Loss Spectroscopy,” Appl. Opt. (accepted for publication).

N. M. Laurendeau, J. E. M. Goldsmith, “Comparison of Laser-Induced Fluorescence Methods for Measurements of Hydroxyl Concentration in Flames,” Appl. Opt. (to be submitted).

Lewis, B. R.

B. R. Lewis, J. H. Carver, T. I. Hobbs, D. G. McCoy, H. P. F. Gies, “Rotational Variation of Predissociation Linewidths for the Schumann-Runge Bands of Molecular Oxygen,” J. Quant. Spectrosc. Radiat. Transfer 22, 213 (1979) and reference therein.
[CrossRef]

Lucht, R. P.

Mallard, W. G.

K. C. Smyth, J. H. Miller, R. C. Dorfman, W. G. Mallard, R. J. Santoro, “Soot Inception in a Methane/Air Diffusion Flame as Characterized by Detailed Species Profiles,” Combust. Flame 62, 157 (1985).
[CrossRef]

McCoy, D. G.

B. R. Lewis, J. H. Carver, T. I. Hobbs, D. G. McCoy, H. P. F. Gies, “Rotational Variation of Predissociation Linewidths for the Schumann-Runge Bands of Molecular Oxygen,” J. Quant. Spectrosc. Radiat. Transfer 22, 213 (1979) and reference therein.
[CrossRef]

McLean, W. J.

J. A. Miller, M. C. Branch, W. J. McLean, D. W. Chandler, M. D. Smooke, R. J. Kee, “The Conversion of HCN to NO and N2 in H2-O2-HCN-Ar Flames at Low Pressure,” in Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1984), pp. 673–684.

Meier, U.

U. Meier, K. Kohse-Hoinghaus, T. Just, “H and O Atom Detection for Combustion Applications: Study of Quenching and Laser Photolysis Effects,” Chem. Phys. Lett. 126, 567 (1986).
[CrossRef]

Miller, J. A.

J. A. Miller, M. C. Branch, W. J. McLean, D. W. Chandler, M. D. Smooke, R. J. Kee, “The Conversion of HCN to NO and N2 in H2-O2-HCN-Ar Flames at Low Pressure,” in Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1984), pp. 673–684.

R. J. Kee, J. F. Grcar, M. D. Smooke, J. A. Miller, “A Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames,” Report SAND85-8240, Sandia National Laboratories, Livermore, CA (Dec.1985).

Miller, J. H.

K. C. Smyth, J. H. Miller, R. C. Dorfman, W. G. Mallard, R. J. Santoro, “Soot Inception in a Methane/Air Diffusion Flame as Characterized by Detailed Species Profiles,” Combust. Flame 62, 157 (1985).
[CrossRef]

Miziolek, A. W.

B. E. Forch, A. W. Miziolek, “Ultraviolet Laser Ignition of Premixed Gases by Efficient and Resonant Multiphoton Photochemical Formation of Microplasmas,” Combust. Sci. Technol. 52, 151 (1987).
[CrossRef]

A. W. Miziolek, M. A. DeWilde, “Multiphoton Photochemical and Collisional Effects During Oxygen–Atom Flame Detection,” Opt. Lett. 9, 390 (1984).
[CrossRef] [PubMed]

A. W. Miziolek, Aberdeen Proving Ground; private communication.

Salmon, J. T.

R. P. Lucht, J. T. Salmon, G. B. King, D. W. Sweeney, N. M. Laurendeau, “Two-Photon-Excited Fluorescence Measurement of Hydrogen Atoms in Flames,” Opt. Lett. 8, 365 (1983).
[CrossRef] [PubMed]

J. T. Salmon, N. M. Laurendeau, “Absolute Concentration Measurements of Atomic Hydrogen in Subatmospheric Premixed H2/O2/N2 Flat Flames with Photoionization Controlled-Loss Spectroscopy,” Appl. Opt. (accepted for publication).

Santoro, R. J.

K. C. Smyth, J. H. Miller, R. C. Dorfman, W. G. Mallard, R. J. Santoro, “Soot Inception in a Methane/Air Diffusion Flame as Characterized by Detailed Species Profiles,” Combust. Flame 62, 157 (1985).
[CrossRef]

Smooke, M. D.

J. A. Miller, M. C. Branch, W. J. McLean, D. W. Chandler, M. D. Smooke, R. J. Kee, “The Conversion of HCN to NO and N2 in H2-O2-HCN-Ar Flames at Low Pressure,” in Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1984), pp. 673–684.

R. J. Kee, J. F. Grcar, M. D. Smooke, J. A. Miller, “A Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames,” Report SAND85-8240, Sandia National Laboratories, Livermore, CA (Dec.1985).

Smyth, K. C.

K. C. Smyth, J. H. Miller, R. C. Dorfman, W. G. Mallard, R. J. Santoro, “Soot Inception in a Methane/Air Diffusion Flame as Characterized by Detailed Species Profiles,” Combust. Flame 62, 157 (1985).
[CrossRef]

Svanberg, S.

M. Aldén, H. Edner, S. Svanberg, “Simultaneous, Spatially Resolved Monitoring of C2 and OH in a C2H2/O2 Flame Using a Diode Array Detector,” Appl. Phys. B 29, 93 (1982).
[CrossRef]

M. Aldén, H. Edner, P. Grafström, S. Svanberg, “Two-Photon Excitation of Atomic Oxygen in a Flame,” Opt. Commun. 42, 244 (1982).
[CrossRef]

Sweeney, D. W.

Teets, R. E.

Wallin, S.

M. Aldén, S. Wallin, W. Wendt, “Applications of Two-Photon Absorption for Detection of CO in Combustion Gases,” Appl. Phys. B 33, 205 (1984).
[CrossRef]

Wendt, W.

M. Aldén, S. Wallin, W. Wendt, “Applications of Two-Photon Absorption for Detection of CO in Combustion Gases,” Appl. Phys. B 33, 205 (1984).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (2)

M. Aldén, H. Edner, S. Svanberg, “Simultaneous, Spatially Resolved Monitoring of C2 and OH in a C2H2/O2 Flame Using a Diode Array Detector,” Appl. Phys. B 29, 93 (1982).
[CrossRef]

M. Aldén, S. Wallin, W. Wendt, “Applications of Two-Photon Absorption for Detection of CO in Combustion Gases,” Appl. Phys. B 33, 205 (1984).
[CrossRef]

Chem. Phys. Lett. (1)

U. Meier, K. Kohse-Hoinghaus, T. Just, “H and O Atom Detection for Combustion Applications: Study of Quenching and Laser Photolysis Effects,” Chem. Phys. Lett. 126, 567 (1986).
[CrossRef]

Combust. Flame (2)

K. C. Smyth, J. H. Miller, R. C. Dorfman, W. G. Mallard, R. J. Santoro, “Soot Inception in a Methane/Air Diffusion Flame as Characterized by Detailed Species Profiles,” Combust. Flame 62, 157 (1985).
[CrossRef]

A. C. Eckbreth, R. J. Hall, “CARS Thermometry in a Sooting Flame,” Combust. Flame 36, 87 (1979).
[CrossRef]

Combust. Sci. Technol. (1)

B. E. Forch, A. W. Miziolek, “Ultraviolet Laser Ignition of Premixed Gases by Efficient and Resonant Multiphoton Photochemical Formation of Microplasmas,” Combust. Sci. Technol. 52, 151 (1987).
[CrossRef]

J. Appl. Phys. (1)

A. C. Eckbreth, “Effects of Laser-Modulated Particulate Incandescence on Raman Scattering Diagnostics,” J. Appl. Phys. 48, 4473 (1977).
[CrossRef]

J. Chem. Phys. (1)

J. E. M. Goldsmith, “Resonant Multiphoton Optogalvanic Detection of Atomic Oxygen in Flames,” J. Chem. Phys. 78, 1610 (1983).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

B. R. Lewis, J. H. Carver, T. I. Hobbs, D. G. McCoy, H. P. F. Gies, “Rotational Variation of Predissociation Linewidths for the Schumann-Runge Bands of Molecular Oxygen,” J. Quant. Spectrosc. Radiat. Transfer 22, 213 (1979) and reference therein.
[CrossRef]

Opt. Commun. (1)

M. Aldén, H. Edner, P. Grafström, S. Svanberg, “Two-Photon Excitation of Atomic Oxygen in a Flame,” Opt. Commun. 42, 244 (1982).
[CrossRef]

Opt. Lett. (6)

Other (8)

R. W. Dibble, Sandia National Laboratories; private communication.

This burner was purchased from McKenna Products, Pittsburg, CA 94565.

J. E. M. Goldsmith, “Flame Studies of Atomic Hydrogen and Oxygen Using Resonant Multiphoton Optogalvanic Spectroscopy,” in Twentieth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, PA, 1984), pp. 1331–1337.

J. T. Salmon, N. M. Laurendeau, “Absolute Concentration Measurements of Atomic Hydrogen in Subatmospheric Premixed H2/O2/N2 Flat Flames with Photoionization Controlled-Loss Spectroscopy,” Appl. Opt. (accepted for publication).

R. J. Kee, J. F. Grcar, M. D. Smooke, J. A. Miller, “A Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames,” Report SAND85-8240, Sandia National Laboratories, Livermore, CA (Dec.1985).

J. A. Miller, M. C. Branch, W. J. McLean, D. W. Chandler, M. D. Smooke, R. J. Kee, “The Conversion of HCN to NO and N2 in H2-O2-HCN-Ar Flames at Low Pressure,” in Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1984), pp. 673–684.

N. M. Laurendeau, J. E. M. Goldsmith, “Comparison of Laser-Induced Fluorescence Methods for Measurements of Hydroxyl Concentration in Flames,” Appl. Opt. (to be submitted).

A. W. Miziolek, Aberdeen Proving Ground; private communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental apparatus used to study two-photon-excited fluorescence detection of atomic oxygen in flames.

Fig. 2
Fig. 2

Atomic oxygen concentration profiles in a lean (equivalence ratio 0.8), atmospheric-pressure hydrogen–oxygen flame. Solid curve: absolute profile calculated from measured OH concentration. Solid circles: relative profile measured using optogalvanic detection using 0.1-mJ pulses focused with a 35-cm focal-length lens (relative intensity of 1). Open symbols: relative profiles measured using fluorescence detection. In order of increasing laser intensity, the following pulse-energy/focal-length combinations were used for the fluorescence measurements: 0.2 mJ and 100 cm (relative intensity of 1) for the squares, 2 mJ and 100 cm (relative intensity of 10) for the diamonds, 0.7 mJ and 35 cm (relative intensity of 30) for the triangles, and 2.5 mJ and 20 cm (relative intensity of 300) for the circles.

Fig. 3
Fig. 3

Molecular oxygen Schumann-Runge bands observed in a very lean hydrogen–oxygen flame (equivalence ratio 0.25, flow rates of 5 liters/min for hydrogen, and 10 liters/min for oxygen) 6 mm above the burner surface by monitoring atomic oxygen produced in the flame (top) and by monitoring the molecular oxygen fluorescence signal directly (bottom).

Fig. 4
Fig. 4

Atomic oxygen concentration profiles in a lean (equivalence ratio 0.6) 72-Torr hydrogen–oxygen–argon flame. Solid curve: absolute profile calculated using a flame model. Symbols: relative profiles measured using fluorescence detection with a 50-cm focal-length lens used to focus 2.5-mJ pulses (relative intensity of 50) for the circles and 0.1-mJ pulses (relative intensity of 2) for the triangles.

Fig. 5
Fig. 5

Intensity dependence of the atomic oxygen fluorescence signal measured in four excitation conditions. Triangles: equivalence-ratio 0.8 atmospheric-pressure flame with a 100-cm focal-length lens used to focus pulse energies up to 2 mJ (relative intensity of 10) 1 mm above the burner. Squares: equivalence-ratio 0.8 atmospheric-pressure flame, with a 35-cm focal-length lens used to focus pulse energies up to 0.8 mJ (relative intensity of 30) 5 mm above the burner. Circles: equivalence-ratio 0.6 72-Torr pressure flame with a 50-cm focal-length lens used to focus pulse energies up to 2.5 mJ (relative intensity of 50) 4 mm above the burner. Diamonds: room-temperature atmospheric-pressure flow of molecular oxygen with a 50-cm focal-length lens used to focus pulse energies up to 2 mJ (relative intensity of 40) into the flow.

Metrics