Abstract

A method is presented for monitoring film thicknesses in fabricating multilayer structures where the thicknesses are not simply quarterwave multiples. This method is similar to the conventional turning point method, except that the monitor signal wavelength is allowed to vary from one layer to the next. No physical modifications to the conventional apparatus are required. Results are presented for an example of the use of this method.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Macleod, “Turning Value Monitoring of Narrow-Band All-Dielectric Thin-Film Optical Filter,” Opt. Acta 19, 1 (1972).
    [Crossref]
  2. C. J. van der Laan, “Optical Monitoring of Nonquarterwave Stacks,” Appl. Opt. 25, 753 (1986).
    [Crossref] [PubMed]
  3. Z. Zhu, W. Li, Y. Hua, “Monitoring the Arbitrary Thickness of Optical Thin Films and their Error Simulation: a Method,” Appl. Opt. 24, 1693 (1985).
    [Crossref] [PubMed]
  4. C. Holm, “Optical Thin Film Production with Continuous Reop-timization of Layer Thicknesses,” Appl. Opt. 18, 1978 (1979).
    [Crossref] [PubMed]
  5. B. Vidal, A. Fornier, E. Pelletier, “Optical Monitoring of Nonquarterwave Multilayer Filters,” Appl. Opt. 17, 1038 (1978).
    [Crossref] [PubMed]
  6. B. Vidal, A. Fornier, E. Pelletier, “Wideband Optical Monitoring of Nonquarterwave Multilayer Filters,” Appl. Opt. 18, 3851 (1979).
    [PubMed]
  7. I. Powell, J. C. M. Zwinkels, A. R. Robertson, “Development of Optical Monitor for Control of Thin-Film Deposition,” Appl. Opt. 25, 3645 (1986).
    [Crossref] [PubMed]
  8. J. E. Rudisill, B. Garcia, B. L. Bobbs, M. Braunstein, “High-Performance Dichroic Beam Splitters for Deuterium Fluoride Chemical Lasers,” Appl. Opt. 19, 2121 (1980).
    [Crossref] [PubMed]
  9. K. H. Behrndt, D. W. Doughty, “Fabrication of Multilayer Dielectric Films,” J. Vac. Sci. Technol. 3, 264 (1966).
    [Crossref]
  10. R. Hermann, A. Zoller, “Automatic Control of Optical Layer Fabrication Processes,” Proc. Soc. Photo-Opt. Instrum. Eng. 401, 83 (1983).
  11. O. S. Heavens, Optical Properties of Thin Solid Films (Butter-worths, London, 1955), Sec. 4.8.
  12. A. J. Vermeulen, “Some Phenomena Connected with the Optical Monitoring of Thin-Film Deposition, and their Application to Optical Coatings,” Opt. Acta. 18, 531 (1971).
    [Crossref]

1986 (2)

1985 (1)

1983 (1)

R. Hermann, A. Zoller, “Automatic Control of Optical Layer Fabrication Processes,” Proc. Soc. Photo-Opt. Instrum. Eng. 401, 83 (1983).

1980 (1)

1979 (2)

1978 (1)

1972 (1)

H. A. Macleod, “Turning Value Monitoring of Narrow-Band All-Dielectric Thin-Film Optical Filter,” Opt. Acta 19, 1 (1972).
[Crossref]

1971 (1)

A. J. Vermeulen, “Some Phenomena Connected with the Optical Monitoring of Thin-Film Deposition, and their Application to Optical Coatings,” Opt. Acta. 18, 531 (1971).
[Crossref]

1966 (1)

K. H. Behrndt, D. W. Doughty, “Fabrication of Multilayer Dielectric Films,” J. Vac. Sci. Technol. 3, 264 (1966).
[Crossref]

Behrndt, K. H.

K. H. Behrndt, D. W. Doughty, “Fabrication of Multilayer Dielectric Films,” J. Vac. Sci. Technol. 3, 264 (1966).
[Crossref]

Bobbs, B. L.

Braunstein, M.

Doughty, D. W.

K. H. Behrndt, D. W. Doughty, “Fabrication of Multilayer Dielectric Films,” J. Vac. Sci. Technol. 3, 264 (1966).
[Crossref]

Fornier, A.

Garcia, B.

Heavens, O. S.

O. S. Heavens, Optical Properties of Thin Solid Films (Butter-worths, London, 1955), Sec. 4.8.

Hermann, R.

R. Hermann, A. Zoller, “Automatic Control of Optical Layer Fabrication Processes,” Proc. Soc. Photo-Opt. Instrum. Eng. 401, 83 (1983).

Holm, C.

Hua, Y.

Li, W.

Macleod, H. A.

H. A. Macleod, “Turning Value Monitoring of Narrow-Band All-Dielectric Thin-Film Optical Filter,” Opt. Acta 19, 1 (1972).
[Crossref]

Pelletier, E.

Powell, I.

Robertson, A. R.

Rudisill, J. E.

van der Laan, C. J.

Vermeulen, A. J.

A. J. Vermeulen, “Some Phenomena Connected with the Optical Monitoring of Thin-Film Deposition, and their Application to Optical Coatings,” Opt. Acta. 18, 531 (1971).
[Crossref]

Vidal, B.

Zhu, Z.

Zoller, A.

R. Hermann, A. Zoller, “Automatic Control of Optical Layer Fabrication Processes,” Proc. Soc. Photo-Opt. Instrum. Eng. 401, 83 (1983).

Zwinkels, J. C. M.

Appl. Opt. (7)

J. Vac. Sci. Technol. (1)

K. H. Behrndt, D. W. Doughty, “Fabrication of Multilayer Dielectric Films,” J. Vac. Sci. Technol. 3, 264 (1966).
[Crossref]

Opt. Acta (1)

H. A. Macleod, “Turning Value Monitoring of Narrow-Band All-Dielectric Thin-Film Optical Filter,” Opt. Acta 19, 1 (1972).
[Crossref]

Opt. Acta. (1)

A. J. Vermeulen, “Some Phenomena Connected with the Optical Monitoring of Thin-Film Deposition, and their Application to Optical Coatings,” Opt. Acta. 18, 531 (1971).
[Crossref]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

R. Hermann, A. Zoller, “Automatic Control of Optical Layer Fabrication Processes,” Proc. Soc. Photo-Opt. Instrum. Eng. 401, 83 (1983).

Other (1)

O. S. Heavens, Optical Properties of Thin Solid Films (Butter-worths, London, 1955), Sec. 4.8.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Flow chart for selection of a set of monitor wavelengths.

Fig. 2
Fig. 2

Simulated reflectance monitor signal with abscissa linear in number of quarterwaves.

Fig. 3
Fig. 3

Measured transmittance spectrum (solid line) of BBAR coating on ZnSe compared with theoretical prediction (dashed line).

Tables (1)

Tables Icon

Table I Parameters for BBAR Coating Design (All Thicknesses are Phase Thicknesses/2π at 7.4 μm)

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

M j = 1 τ j ( exp ( i δ j ) ρ j exp ( i δ j ) ρ j exp ( i δ j ) exp ( i δ j ) ) ,
δ j = 2 π N j d j cos ( θ j ) / λ ,
θ j = arcsin [ sin ( θ m + 1 ) N m + 1 / N j ] ,
ρ j = N j + 1 cos ( θ j + 1 ) N j cos ( θ j ) N j + 1 cos ( θ j + 1 ) + N j cos ( θ j ) ,
τ j = 1 + ρ j ,
ρ j = N j + 1 cos ( θ j ) N j cos ( θ j + 1 ) N j + 1 cos ( θ j ) + N j cos ( θ j + 1 ) ,
τ j = 1 + [ ρ j cos ( θ j + 1 ) ] / cos ( θ j ) ,
1 t ( 1 r ) = M m M m 1 M 1 M 0 ( 1 0 ) .
T = | t | 2 n 0 / n m + 1 ; R = | r | 2 .
( a c b d ) = M m 1 M m 2 M 0 .
t = τ m / [ a exp ( i δ m ) + b ρ m exp ( i δ m ) ] .
k m ( | a | 2 ξ | b ρ m | 2 / ξ ) = n m ( a b * ρ m * ζ a * b ρ m / ζ )
ζ = exp ( i 4 π d m n m / λ ) ; ξ = exp ( 4 π d m k m / λ ) .
Im [ N m ρ m * ( ρ m 2 1 ) ( | a | 2 a * b ξ / ζ + | b | 2 a b * ζ / ξ ) ] = | a b | 2 [ 2 n m Im ( ρ m 2 ) + k m ( | ρ m | 4 1 ) ] .
4 π n m d m / λ = ϕ ,
a * b ρ m = f exp ( i ϕ ) ,
4 n 1 d 1 / λ 1 = I 1
4 n 2 d 2 / λ 2 = I 2 + s 2 ; 0 s 2 < 1

Metrics