Abstract

The required thickness and complex refractive index of single homogeneous layers on lossy substrates to produce zero reflectivity are calculated by a rigorous impedance matching approach. The analysis is applicable to both TE and TM polarization and to any angle of incidence. The filling factor and groove depth of a rectangular-groove grating, equivalent to a single homogeneous lossy layer in the long-wavelength limit, are calculated. The method reduces to that previously found for dielectric surface-relief gratings in the limit of no losses. The antireflection behavior of the gratings is verified using the rigorous (without approximations) coupled-wave analysis of metallic surface-relief grating diffraction. It is shown that multiple zero-reflectivity solutions exist for both TE and TM polarizations and for any angle of incidence for an arbitrary complex-refractive-index substrate. Example zero-reflectivity gold gratings for incident free space wavelengths from 0.44 to 12.0 μm are presented.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (45)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription