Abstract

A differential-absorption lidar system has been developed which uses a continuously tunable (1.5–2.3 μm) cobalt-doped magnesium fluoride laser as the radiation source. Preliminary atmospheric measurements of water vapor, HCl, and CH4 have been made with this system, including both path-averaged and ranged-resolved DIAL measurements at ranges up to 6 and 3 km, respectively.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. K. Killinger, N. Menyuk, “Laser Remote Sensing of the Atmosphere,” Science 235, 37 (02Jan., 1987).
    [CrossRef] [PubMed]
  2. Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, R. S. Feigelson, “AgGaS2 Infrared Parametric Oscillator,” Appl. Phys. Lett. 45, 313 (1984).
    [CrossRef]
  3. P. F. Moulton, “Spectroscopic and Laser Characteristics of TiAl2O3,” J. Opt. Soc. Am. B3, 125 (1986).
  4. J. E. Pinto, E. Georgiou, C. R. Pollock, “Stable Color-Center Laser in OH-Doped NaCl Operating in the 1.41- to 1181-μm Region,” Opt. Lett. 11, 519 (1986).
    [CrossRef] [PubMed]
  5. P. F. Moulton, “Pulse-Pumped Operation of Divalent Transition-Metal Lasers,” IEEE J. Quantum Electron. QE-18, 1185 (1982).
    [CrossRef]
  6. S. Lovold, P. F. Moulton, D. K. Killinger, N. Menyuk, “Frequency Tuning Characteristics of a Q-Switched Co:MgF2 Laser,” IEEE J. Quantum Electron. QE-21, 000 (1985).
  7. This detector was provided by D. L. Spears.
  8. W. S. Benedict, R. F. Calfee, “Line Parameters for the 1.9 and 6.3 Micron Water Vapor Bands,” Environmental Science Service Administration, ESSA Professional Paper 2, Washington, DC (1967).
  9. L. S. Rothman, “AFGL Atmospheric Absorption Line Parameters Compilation: 1980 Version,” Appl. Opt. 20, 791 (1981); This paper describes available AFGL atmospheric line parameter compilation.
    [CrossRef] [PubMed]
  10. R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” Environmental Research Paper411 (1972).
  11. C. Cahen, G. Megie, “A Spectral Limitation of the Range-Resolved Differential Absorption Lidar Technique,” J. Quant. Spectrosc. Radiat. Transfer 25, 151 (1981).
    [CrossRef]
  12. D. K. Killinger, N. Menyuk, “Remote Probing of the Atmosphere Using a CO2 DIAL System,” IEEE J. Quantum Electron. QE-17, 1917 (1981).
    [CrossRef]
  13. N. Menyuk, D. K. Killinger, C. R. Menyuk, “Error Reduction in Laser Remote Sensing: Combined Effects of Cross Correlation and Signal Averaging,” Appl. Opt. 24, 118 (1985).
    [CrossRef] [PubMed]
  14. W. Staehr, W. Lahmann, C. Weitkamp, “Range-Resolved Differential Absorption Lidar: Optimization of Range and Sensitivity,” Appl. Opt. 24, 1950 (1985).
    [CrossRef] [PubMed]
  15. D. J. Brassington, “Differential Absorption Lidar Measurements of Atmospheric Water Vapor Using an Optical Parametric Oscillator Source,” Appl. Opt. 21, 4411 (1982).
    [CrossRef] [PubMed]

1987 (1)

D. K. Killinger, N. Menyuk, “Laser Remote Sensing of the Atmosphere,” Science 235, 37 (02Jan., 1987).
[CrossRef] [PubMed]

1986 (2)

1985 (3)

1984 (1)

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, R. S. Feigelson, “AgGaS2 Infrared Parametric Oscillator,” Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

1982 (2)

1981 (3)

L. S. Rothman, “AFGL Atmospheric Absorption Line Parameters Compilation: 1980 Version,” Appl. Opt. 20, 791 (1981); This paper describes available AFGL atmospheric line parameter compilation.
[CrossRef] [PubMed]

C. Cahen, G. Megie, “A Spectral Limitation of the Range-Resolved Differential Absorption Lidar Technique,” J. Quant. Spectrosc. Radiat. Transfer 25, 151 (1981).
[CrossRef]

D. K. Killinger, N. Menyuk, “Remote Probing of the Atmosphere Using a CO2 DIAL System,” IEEE J. Quantum Electron. QE-17, 1917 (1981).
[CrossRef]

1972 (1)

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” Environmental Research Paper411 (1972).

Benedict, W. S.

W. S. Benedict, R. F. Calfee, “Line Parameters for the 1.9 and 6.3 Micron Water Vapor Bands,” Environmental Science Service Administration, ESSA Professional Paper 2, Washington, DC (1967).

Brassington, D. J.

Byer, R. L.

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, R. S. Feigelson, “AgGaS2 Infrared Parametric Oscillator,” Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

Cahen, C.

C. Cahen, G. Megie, “A Spectral Limitation of the Range-Resolved Differential Absorption Lidar Technique,” J. Quant. Spectrosc. Radiat. Transfer 25, 151 (1981).
[CrossRef]

Calfee, R. F.

W. S. Benedict, R. F. Calfee, “Line Parameters for the 1.9 and 6.3 Micron Water Vapor Bands,” Environmental Science Service Administration, ESSA Professional Paper 2, Washington, DC (1967).

Eckardt, R. C.

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, R. S. Feigelson, “AgGaS2 Infrared Parametric Oscillator,” Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

Fan, Y. X.

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, R. S. Feigelson, “AgGaS2 Infrared Parametric Oscillator,” Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

Feigelson, R. S.

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, R. S. Feigelson, “AgGaS2 Infrared Parametric Oscillator,” Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

Fenn, R. W.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” Environmental Research Paper411 (1972).

Garing, J. S.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” Environmental Research Paper411 (1972).

Georgiou, E.

Killinger, D. K.

D. K. Killinger, N. Menyuk, “Laser Remote Sensing of the Atmosphere,” Science 235, 37 (02Jan., 1987).
[CrossRef] [PubMed]

S. Lovold, P. F. Moulton, D. K. Killinger, N. Menyuk, “Frequency Tuning Characteristics of a Q-Switched Co:MgF2 Laser,” IEEE J. Quantum Electron. QE-21, 000 (1985).

N. Menyuk, D. K. Killinger, C. R. Menyuk, “Error Reduction in Laser Remote Sensing: Combined Effects of Cross Correlation and Signal Averaging,” Appl. Opt. 24, 118 (1985).
[CrossRef] [PubMed]

D. K. Killinger, N. Menyuk, “Remote Probing of the Atmosphere Using a CO2 DIAL System,” IEEE J. Quantum Electron. QE-17, 1917 (1981).
[CrossRef]

Lahmann, W.

Lovold, S.

S. Lovold, P. F. Moulton, D. K. Killinger, N. Menyuk, “Frequency Tuning Characteristics of a Q-Switched Co:MgF2 Laser,” IEEE J. Quantum Electron. QE-21, 000 (1985).

McClatchey, R. A.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” Environmental Research Paper411 (1972).

Megie, G.

C. Cahen, G. Megie, “A Spectral Limitation of the Range-Resolved Differential Absorption Lidar Technique,” J. Quant. Spectrosc. Radiat. Transfer 25, 151 (1981).
[CrossRef]

Menyuk, C. R.

Menyuk, N.

D. K. Killinger, N. Menyuk, “Laser Remote Sensing of the Atmosphere,” Science 235, 37 (02Jan., 1987).
[CrossRef] [PubMed]

S. Lovold, P. F. Moulton, D. K. Killinger, N. Menyuk, “Frequency Tuning Characteristics of a Q-Switched Co:MgF2 Laser,” IEEE J. Quantum Electron. QE-21, 000 (1985).

N. Menyuk, D. K. Killinger, C. R. Menyuk, “Error Reduction in Laser Remote Sensing: Combined Effects of Cross Correlation and Signal Averaging,” Appl. Opt. 24, 118 (1985).
[CrossRef] [PubMed]

D. K. Killinger, N. Menyuk, “Remote Probing of the Atmosphere Using a CO2 DIAL System,” IEEE J. Quantum Electron. QE-17, 1917 (1981).
[CrossRef]

Moulton, P. F.

P. F. Moulton, “Spectroscopic and Laser Characteristics of TiAl2O3,” J. Opt. Soc. Am. B3, 125 (1986).

S. Lovold, P. F. Moulton, D. K. Killinger, N. Menyuk, “Frequency Tuning Characteristics of a Q-Switched Co:MgF2 Laser,” IEEE J. Quantum Electron. QE-21, 000 (1985).

P. F. Moulton, “Pulse-Pumped Operation of Divalent Transition-Metal Lasers,” IEEE J. Quantum Electron. QE-18, 1185 (1982).
[CrossRef]

Pinto, J. E.

Pollock, C. R.

Rothman, L. S.

Route, R. K.

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, R. S. Feigelson, “AgGaS2 Infrared Parametric Oscillator,” Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

Selby, J. E. A.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” Environmental Research Paper411 (1972).

Staehr, W.

Volz, F. E.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” Environmental Research Paper411 (1972).

Weitkamp, C.

Appl. Opt. (4)

Appl. Phys. Lett. (1)

Y. X. Fan, R. C. Eckardt, R. L. Byer, R. K. Route, R. S. Feigelson, “AgGaS2 Infrared Parametric Oscillator,” Appl. Phys. Lett. 45, 313 (1984).
[CrossRef]

Environmental Research Paper (1)

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” Environmental Research Paper411 (1972).

IEEE J. Quantum Electron. (3)

P. F. Moulton, “Pulse-Pumped Operation of Divalent Transition-Metal Lasers,” IEEE J. Quantum Electron. QE-18, 1185 (1982).
[CrossRef]

S. Lovold, P. F. Moulton, D. K. Killinger, N. Menyuk, “Frequency Tuning Characteristics of a Q-Switched Co:MgF2 Laser,” IEEE J. Quantum Electron. QE-21, 000 (1985).

D. K. Killinger, N. Menyuk, “Remote Probing of the Atmosphere Using a CO2 DIAL System,” IEEE J. Quantum Electron. QE-17, 1917 (1981).
[CrossRef]

J. Opt. Soc. Am. (1)

P. F. Moulton, “Spectroscopic and Laser Characteristics of TiAl2O3,” J. Opt. Soc. Am. B3, 125 (1986).

J. Quant. Spectrosc. Radiat. Transfer (1)

C. Cahen, G. Megie, “A Spectral Limitation of the Range-Resolved Differential Absorption Lidar Technique,” J. Quant. Spectrosc. Radiat. Transfer 25, 151 (1981).
[CrossRef]

Opt. Lett. (1)

Science (1)

D. K. Killinger, N. Menyuk, “Laser Remote Sensing of the Atmosphere,” Science 235, 37 (02Jan., 1987).
[CrossRef] [PubMed]

Other (2)

This detector was provided by D. L. Spears.

W. S. Benedict, R. F. Calfee, “Line Parameters for the 1.9 and 6.3 Micron Water Vapor Bands,” Environmental Science Service Administration, ESSA Professional Paper 2, Washington, DC (1967).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of Co:MgF2 DIAL system.

Fig. 2
Fig. 2

Lidar returns backscattered from a hillside as a function of the Co:MgF2 laser wavelength. The absorption features are due to water vapor in the atmosphere.

Fig. 3
Fig. 3

Wavelength scan of Co:MgF2 DIAL system showing both lidar returns and laboratory absorption cell signals as the laser wavelength was scanned over an absorption line of HCl. No HCl was measured in the atmosphere.

Fig. 4
Fig. 4

Range-resolved Co:MgF2 lidar returns from atmospheric aerosols as a function of range.

Fig. 5
Fig. 5

Atmospheric range-resolved lidar returns as the Co:MgF2 laser was tuned on- and off-resonance to the absorption line of water vapor near 1.7515 μm.

Fig. 6
Fig. 6

Atmospheric range-resolved DIAL measurements of HCl injected into a semienclosed cell located at a range of 200 m.

Fig. 7
Fig. 7

Calculated path-averaged sensitivity of the Co:MgF2 DIAL system for the remote sensing of atmospheric HCl.

Fig. 8
Fig. 8

Calculated range-resolved sensitivity of the Co:MgF2 DIAL system for the remote sensing of atmospheric HCl.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

N min ( NEP ) π R 2 ρ σ a A K P t exp ( 2 α R ) ,
N min = ( Δ P / P r ) 2 σ a R .

Metrics