Abstract

A novel quasiheterodyne fiber sensor is proposed, in which the heterodyne output can be obtained only by injecting a staircase current with four steps into a laser diode. Moreover, in this sensor system the parameter of the staircase current can be automatically adjusted to the ideal value to obtain high accuracy. The experimental setup constructed has operated successfully. Error analyses were also carried out.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
    [CrossRef]
  2. R. H. Kingston, R. A. Becker, F. J. Leonberger, “Broadband Guided-Wave Optical Frequency Translator Using an Electro-Optical Bragg Array,” Appl. Phys. Lett. 42, 759 (1983).
    [CrossRef]
  3. L. M. Johnson, R. A. Becker, R. H. Kingston, “Integrated-Optical Channel-Waveguide Frequency Shifter,”in Technical Digest, Topical Meeting on Integrated and Guided-Wave Optics (Optical Society of America, Washington, DC, 1984), paper WD4.
  4. M. Izutsu, S. Shikama, T. Sueta, “Integrated Optical SSB Modulator/Frequency Shifter,” IEEE J. Quantum Electron. QE-17, 2225 (1981).
    [CrossRef]
  5. R. N. Shagam, J. C. Wyant, “Optical Frequency Shifter for Heterodyne Interferometers Using Multiple Rotating Polarization Retarders,” Appl. Opt. 17, 3034 (1978).
    [CrossRef] [PubMed]
  6. G. E. Sommargren, “Optical Heterodyne Profilometry,” Appl. Opt. 20, 610 (1981).
    [CrossRef] [PubMed]
  7. B. Y. Kim, J. N. Blake, H. E. Engan, H. J. Shaw, “All-Fiber Acousto-Optic Frequency Shifter,” Opt. Lett. 11, 389 (1986).
    [CrossRef] [PubMed]
  8. A. D. Kersey, M. Corke, D. A. Jackson, “Linearised Polarimetric Optical Fiber Sensor Using a Heterodyne-Type Signal Recovery Scheme,” Electron. Lett. 20, 20 (1984).
    [CrossRef]
  9. D. A. Jackson, A. D. Kersey, M. Corke, J. D. C. Jones, “Pseudoheterodyne Detection Scheme for Optical Interferometers,” Electron. Lett. 18, 1081 (1982).
    [CrossRef]
  10. J. H. Cole, B. A. Danver, J. A. Bucaro, “Synthetic-Heterodyne Interferometric Demodulation,” IEEE J. Quantum Electron. QE-18, 694 (1982).
    [CrossRef]
  11. B. Y. Kim, H. J. Shaw, “Phase-Reading, All-Fiber-Optic Gyroscope,” Opt. Lett. 9, 378 (1984).
    [CrossRef] [PubMed]
  12. R. C. Cumming, “The Serrodyne Frequency Translator,” Proc. IRE 45, 175 (Feb.1959).
    [CrossRef]
  13. J. S. Jaffe, R. C. Mackey, “Microwave Frequency Translator,” IEEE Trans. Microwave Theory Tech. MTT-13, 371 (1965).
    [CrossRef]
  14. K. Hotate, I. Sagehashi, N. Niwa, “Phase-Nulling Optical-Fiber Sensor by Direct Frequency Modulation of Laser Diode,” in Technical Digest, Fourth International Conference on Integrated Optics and Optical Fiber Communication, Tokyo (1983).
  15. K. Hotate, N. Okuma, M. Higashiguchi, N. Niwa, “Rotation Detection by Optical Heterodyne Fiber Gyro with Frequency Output,” Opt. Lett. 7, 331 (1982).
    [CrossRef] [PubMed]

1986 (1)

1984 (2)

B. Y. Kim, H. J. Shaw, “Phase-Reading, All-Fiber-Optic Gyroscope,” Opt. Lett. 9, 378 (1984).
[CrossRef] [PubMed]

A. D. Kersey, M. Corke, D. A. Jackson, “Linearised Polarimetric Optical Fiber Sensor Using a Heterodyne-Type Signal Recovery Scheme,” Electron. Lett. 20, 20 (1984).
[CrossRef]

1983 (1)

R. H. Kingston, R. A. Becker, F. J. Leonberger, “Broadband Guided-Wave Optical Frequency Translator Using an Electro-Optical Bragg Array,” Appl. Phys. Lett. 42, 759 (1983).
[CrossRef]

1982 (4)

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

D. A. Jackson, A. D. Kersey, M. Corke, J. D. C. Jones, “Pseudoheterodyne Detection Scheme for Optical Interferometers,” Electron. Lett. 18, 1081 (1982).
[CrossRef]

J. H. Cole, B. A. Danver, J. A. Bucaro, “Synthetic-Heterodyne Interferometric Demodulation,” IEEE J. Quantum Electron. QE-18, 694 (1982).
[CrossRef]

K. Hotate, N. Okuma, M. Higashiguchi, N. Niwa, “Rotation Detection by Optical Heterodyne Fiber Gyro with Frequency Output,” Opt. Lett. 7, 331 (1982).
[CrossRef] [PubMed]

1981 (2)

G. E. Sommargren, “Optical Heterodyne Profilometry,” Appl. Opt. 20, 610 (1981).
[CrossRef] [PubMed]

M. Izutsu, S. Shikama, T. Sueta, “Integrated Optical SSB Modulator/Frequency Shifter,” IEEE J. Quantum Electron. QE-17, 2225 (1981).
[CrossRef]

1978 (1)

1965 (1)

J. S. Jaffe, R. C. Mackey, “Microwave Frequency Translator,” IEEE Trans. Microwave Theory Tech. MTT-13, 371 (1965).
[CrossRef]

1959 (1)

R. C. Cumming, “The Serrodyne Frequency Translator,” Proc. IRE 45, 175 (Feb.1959).
[CrossRef]

Becker, R. A.

R. H. Kingston, R. A. Becker, F. J. Leonberger, “Broadband Guided-Wave Optical Frequency Translator Using an Electro-Optical Bragg Array,” Appl. Phys. Lett. 42, 759 (1983).
[CrossRef]

L. M. Johnson, R. A. Becker, R. H. Kingston, “Integrated-Optical Channel-Waveguide Frequency Shifter,”in Technical Digest, Topical Meeting on Integrated and Guided-Wave Optics (Optical Society of America, Washington, DC, 1984), paper WD4.

Blake, J. N.

Bucaro, J. A.

J. H. Cole, B. A. Danver, J. A. Bucaro, “Synthetic-Heterodyne Interferometric Demodulation,” IEEE J. Quantum Electron. QE-18, 694 (1982).
[CrossRef]

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

Cole, J. H.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

J. H. Cole, B. A. Danver, J. A. Bucaro, “Synthetic-Heterodyne Interferometric Demodulation,” IEEE J. Quantum Electron. QE-18, 694 (1982).
[CrossRef]

Corke, M.

A. D. Kersey, M. Corke, D. A. Jackson, “Linearised Polarimetric Optical Fiber Sensor Using a Heterodyne-Type Signal Recovery Scheme,” Electron. Lett. 20, 20 (1984).
[CrossRef]

D. A. Jackson, A. D. Kersey, M. Corke, J. D. C. Jones, “Pseudoheterodyne Detection Scheme for Optical Interferometers,” Electron. Lett. 18, 1081 (1982).
[CrossRef]

Cumming, R. C.

R. C. Cumming, “The Serrodyne Frequency Translator,” Proc. IRE 45, 175 (Feb.1959).
[CrossRef]

Dandridge, A.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

Danver, B. A.

J. H. Cole, B. A. Danver, J. A. Bucaro, “Synthetic-Heterodyne Interferometric Demodulation,” IEEE J. Quantum Electron. QE-18, 694 (1982).
[CrossRef]

Engan, H. E.

Giallorenzi, T. G.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

Higashiguchi, M.

Hotate, K.

K. Hotate, N. Okuma, M. Higashiguchi, N. Niwa, “Rotation Detection by Optical Heterodyne Fiber Gyro with Frequency Output,” Opt. Lett. 7, 331 (1982).
[CrossRef] [PubMed]

K. Hotate, I. Sagehashi, N. Niwa, “Phase-Nulling Optical-Fiber Sensor by Direct Frequency Modulation of Laser Diode,” in Technical Digest, Fourth International Conference on Integrated Optics and Optical Fiber Communication, Tokyo (1983).

Izutsu, M.

M. Izutsu, S. Shikama, T. Sueta, “Integrated Optical SSB Modulator/Frequency Shifter,” IEEE J. Quantum Electron. QE-17, 2225 (1981).
[CrossRef]

Jackson, D. A.

A. D. Kersey, M. Corke, D. A. Jackson, “Linearised Polarimetric Optical Fiber Sensor Using a Heterodyne-Type Signal Recovery Scheme,” Electron. Lett. 20, 20 (1984).
[CrossRef]

D. A. Jackson, A. D. Kersey, M. Corke, J. D. C. Jones, “Pseudoheterodyne Detection Scheme for Optical Interferometers,” Electron. Lett. 18, 1081 (1982).
[CrossRef]

Jaffe, J. S.

J. S. Jaffe, R. C. Mackey, “Microwave Frequency Translator,” IEEE Trans. Microwave Theory Tech. MTT-13, 371 (1965).
[CrossRef]

Johnson, L. M.

L. M. Johnson, R. A. Becker, R. H. Kingston, “Integrated-Optical Channel-Waveguide Frequency Shifter,”in Technical Digest, Topical Meeting on Integrated and Guided-Wave Optics (Optical Society of America, Washington, DC, 1984), paper WD4.

Jones, J. D. C.

D. A. Jackson, A. D. Kersey, M. Corke, J. D. C. Jones, “Pseudoheterodyne Detection Scheme for Optical Interferometers,” Electron. Lett. 18, 1081 (1982).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. Corke, D. A. Jackson, “Linearised Polarimetric Optical Fiber Sensor Using a Heterodyne-Type Signal Recovery Scheme,” Electron. Lett. 20, 20 (1984).
[CrossRef]

D. A. Jackson, A. D. Kersey, M. Corke, J. D. C. Jones, “Pseudoheterodyne Detection Scheme for Optical Interferometers,” Electron. Lett. 18, 1081 (1982).
[CrossRef]

Kim, B. Y.

Kingston, R. H.

R. H. Kingston, R. A. Becker, F. J. Leonberger, “Broadband Guided-Wave Optical Frequency Translator Using an Electro-Optical Bragg Array,” Appl. Phys. Lett. 42, 759 (1983).
[CrossRef]

L. M. Johnson, R. A. Becker, R. H. Kingston, “Integrated-Optical Channel-Waveguide Frequency Shifter,”in Technical Digest, Topical Meeting on Integrated and Guided-Wave Optics (Optical Society of America, Washington, DC, 1984), paper WD4.

Leonberger, F. J.

R. H. Kingston, R. A. Becker, F. J. Leonberger, “Broadband Guided-Wave Optical Frequency Translator Using an Electro-Optical Bragg Array,” Appl. Phys. Lett. 42, 759 (1983).
[CrossRef]

Mackey, R. C.

J. S. Jaffe, R. C. Mackey, “Microwave Frequency Translator,” IEEE Trans. Microwave Theory Tech. MTT-13, 371 (1965).
[CrossRef]

Niwa, N.

K. Hotate, N. Okuma, M. Higashiguchi, N. Niwa, “Rotation Detection by Optical Heterodyne Fiber Gyro with Frequency Output,” Opt. Lett. 7, 331 (1982).
[CrossRef] [PubMed]

K. Hotate, I. Sagehashi, N. Niwa, “Phase-Nulling Optical-Fiber Sensor by Direct Frequency Modulation of Laser Diode,” in Technical Digest, Fourth International Conference on Integrated Optics and Optical Fiber Communication, Tokyo (1983).

Okuma, N.

Priest, R. G.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

Rashleigh, S. C.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

Sagehashi, I.

K. Hotate, I. Sagehashi, N. Niwa, “Phase-Nulling Optical-Fiber Sensor by Direct Frequency Modulation of Laser Diode,” in Technical Digest, Fourth International Conference on Integrated Optics and Optical Fiber Communication, Tokyo (1983).

Shagam, R. N.

Shaw, H. J.

Shikama, S.

M. Izutsu, S. Shikama, T. Sueta, “Integrated Optical SSB Modulator/Frequency Shifter,” IEEE J. Quantum Electron. QE-17, 2225 (1981).
[CrossRef]

Sigel, G. H.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

Sommargren, G. E.

Sueta, T.

M. Izutsu, S. Shikama, T. Sueta, “Integrated Optical SSB Modulator/Frequency Shifter,” IEEE J. Quantum Electron. QE-17, 2225 (1981).
[CrossRef]

Wyant, J. C.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

R. H. Kingston, R. A. Becker, F. J. Leonberger, “Broadband Guided-Wave Optical Frequency Translator Using an Electro-Optical Bragg Array,” Appl. Phys. Lett. 42, 759 (1983).
[CrossRef]

Electron. Lett. (2)

A. D. Kersey, M. Corke, D. A. Jackson, “Linearised Polarimetric Optical Fiber Sensor Using a Heterodyne-Type Signal Recovery Scheme,” Electron. Lett. 20, 20 (1984).
[CrossRef]

D. A. Jackson, A. D. Kersey, M. Corke, J. D. C. Jones, “Pseudoheterodyne Detection Scheme for Optical Interferometers,” Electron. Lett. 18, 1081 (1982).
[CrossRef]

IEEE J. Quantum Electron. (3)

J. H. Cole, B. A. Danver, J. A. Bucaro, “Synthetic-Heterodyne Interferometric Demodulation,” IEEE J. Quantum Electron. QE-18, 694 (1982).
[CrossRef]

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

M. Izutsu, S. Shikama, T. Sueta, “Integrated Optical SSB Modulator/Frequency Shifter,” IEEE J. Quantum Electron. QE-17, 2225 (1981).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

J. S. Jaffe, R. C. Mackey, “Microwave Frequency Translator,” IEEE Trans. Microwave Theory Tech. MTT-13, 371 (1965).
[CrossRef]

Opt. Lett. (3)

Proc. IRE (1)

R. C. Cumming, “The Serrodyne Frequency Translator,” Proc. IRE 45, 175 (Feb.1959).
[CrossRef]

Other (2)

L. M. Johnson, R. A. Becker, R. H. Kingston, “Integrated-Optical Channel-Waveguide Frequency Shifter,”in Technical Digest, Topical Meeting on Integrated and Guided-Wave Optics (Optical Society of America, Washington, DC, 1984), paper WD4.

K. Hotate, I. Sagehashi, N. Niwa, “Phase-Nulling Optical-Fiber Sensor by Direct Frequency Modulation of Laser Diode,” in Technical Digest, Fourth International Conference on Integrated Optics and Optical Fiber Communication, Tokyo (1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Principle of forming the quasiheterodyne output using phase modulation with a four-step staircase waveform: (a) phase modulation waveform (injection current waveform into a LD); (b) interference output iA of the sensor system; (c) heterodyne output iB (fundamental component of iA).

Fig. 2
Fig. 2

Schematic diagram of the proposed quasiheterodyne optical fiber sensor.

Fig. 3
Fig. 3

Schematic diagram of the compensation output iC: (a) in ideal conditions; (b) in nonideal conditions, Δ is the error in the step difference of the driving waveform; (c) operating compensation unit I; (d) operating compensation units I and II.

Fig. 4
Fig. 4

Compensation output iC obtained in the experiment: (a) in nonideal conditions; (b) operating compensation unit I; (c) operating compensation units I and II; (d) the same data as (c), the scale in the ordinate is enhanced.

Fig. 5
Fig. 5

Error compensation obtained by compensation units I and II: (a) error signal ie1 in unit I, and (b) error signal ie2 in unit II while operating unit I.

Fig. 6
Fig. 6

Interference output iA of the sensor system obtained in the experiment: upper portions, distorted iA in nonideal operation; lower portions, correct results with automated adjustment of the driving wave parameter.

Fig. 7
Fig. 7

Measurement of ac signal input by the sensor system: (a) input signal into the optical phase modulator with voice coil, and (b) phase of the fundamental component of iA detected by a lock-in amplifier.

Fig. 8
Fig. 8

Error in the sensor output caused by the misadjustment of the step difference of the staircase driving waveform.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Δ θ = D Δ I ,
D = ( d Δ β / d ω ) L K f
δ = D Δ Ĩ π / 2 .
i B α cos ( ω t ϕ ) δ sin ϕ cos ω t + 2 δ cos ϕ sin ω t ,
i B = B cos ( ω t X ) ,
X = tan 1 [ ( sin ϕ + 2 δ sin ϕ ) / ( cos ϕ δ sin ϕ ) ] ,
B = 1 + 5 δ / 2 + δ sin 2 ϕ + ( 3 δ / 2 ) cos 2 ϕ .
E = X ϕ .
d Δ β / d ω Δ β / c k
ϕ = Δ β L .
Δ θ = ( ϕ / c k ) K f Δ i .

Metrics