Abstract

An experimental protocol, using photoionization controlled-loss spectroscopy (PICLS), has been developed for obtaining absolute number densities of atomic hydrogen from laser-induced fluorescence measurements in flames. Two laser beams are employed, the first to excite hydrogen atoms from the ground state to the second excited state via two-photon absorption and the second to strongly photoionize the excited atoms. The resulting fluorescence measurements are independent of quenching. A model is presented that assures the viability of PICLS as long as the photoionization rate is greater than or equal to the quenching rate. The model is verified in fuel-lean, stoichiometric, and fuel-rich flat premixed H2/O2/N2 flames at pressures of 20 and 72 Torr. Over this range in pressure, the ratio of number densities obtained from PICLS to those calculated from partial equilibrium is constant to within 20%. Most of the error arises from the sensitivity of the partial equilibrium calculations to small uncertainties in both the fuel-oxidizer ratio and the measured OH concentration. Because of the quenching-independent nature of PICLS, quantitative fluorescence measurements can be made by calibrating at a single favorable flame condition.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. Harris, A. M. Weiner, R. J. Blint, J. E. M. Goldsmith, “Concentration Profiles in Rich and Sooting Ethylene Flames,” in Proceedings, Twenty-first Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, in press, 1986).
  2. R. W. Dreyfus, P. Bogen, H. Langer, “Atomic H and D Concentrations and Velocities Measured with Harmonically Generated Lyman-α (1215A) Radiation,” AIP Conf. Proc. No. 90, 57 (1972).
  3. D. Appel, J. P. Appleton, “Shock Tube Studies of Deuterium Dissociation and Oxidation by Atomic Resonance Absorption Spectrophotometry,” in Proceedings, Fifteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1974), p. 701.
  4. A. Lifshitz, G. B. Skinner, D. R. Wood, “Resonance Absorption Measurements of Atom Concentrations in Reacting Gas Mixtures. I. Shapes of H and D Lyman-α Lines from Microwave Sources,” J. Chem. Phys. 70, 5607 (1979).
    [CrossRef]
  5. R. Wallenstein, “Generation of Narrowband Tunable VUV Radiation at the Lyman-α Wavelength,” Opt. Commun. 33, 119 (1980).
    [CrossRef]
  6. E. M. Bulewicz, C. G. James, T. M. Sugden, “Photometric Investigations of Alkali Metals in Hydrogen Flame Gases. II. The Study of Excess Concentrations of Hydrogen in Burnt Gas Mixtures,” Proc. Soc. London Ser. A 235, 89 (1956).
    [CrossRef]
  7. M. J. McEwan, L. F. Phillips, “Use of Li/LiOH Method for Measuring [HI in Low-Temperature Flames,” Combust. Flame 9, 420 (1965).
    [CrossRef]
  8. K. G. Neoh, J. B. Howard, A. F. Sarofim, “Soot Oxidation in Flames,” in Particulate Carbon: Formation During Combustion, E. C. Siegla, G. W. Smith, Eds. (Plenum, New York, 1981), p. 261.
  9. T. W. Hansch, S. A. Lee, R. Wallenstein, C. Wieman, “Doppler-Free Two-Photon Spectroscopy of Hydrogen 1S–2S*,” Phys. Rev. Lett. 34, 307 (1975).
    [CrossRef]
  10. J. Boker, R. R. Freeman, J. C. White, R. H. Storz, “Two-Photon Excitation of the n = 3 in Level in H and D Atoms,” Phys. Rev. A 24, 612 (1981).
    [CrossRef]
  11. R. P. Lucht, J. T. Salmon, G. B. King, D. W. Sweeney, N. M. Laurendeau, “Two-Photon-Excited Fluorescence Measurement of Hydrogen Atoms in Flames,” Opt. Lett. 8, 365 (1983).
    [CrossRef] [PubMed]
  12. M. Alden, A. L. Schawlow, S. Svanberg, W. Wendt, P.-L. Zhang, “Three-Photon-Excited Fluorescence Detection of Atomic Hydrogen in an Atmospheric-Pressure Flame,” Opt. Lett. 9, 211 (1984).
    [CrossRef] [PubMed]
  13. J. E. M. Goldsmith, “Two-Step Saturated Fluorescence Detection of Atomic Hydrogen in Flames,” Opt. Lett. 10, 116 (1985).
    [CrossRef] [PubMed]
  14. J. E. M. Goldsmith, R. J. M. Anderson, “Imaging of Atomic Hydrogen in Flames with Two-Step Saturated Fluorescence Detection,” Appl. Opt. 24, 607 (1985).
    [CrossRef] [PubMed]
  15. J. E. M. Goldsmith, “Photochemical Effects in 205-nm, Two-Photon-Excited Fluorescence Detection of Atomic Hydrogen in Flames,” Opt. Lett. 11, 416 (1986).
    [CrossRef] [PubMed]
  16. G. C. Bjorklund, C. P. Ausschnitt, R. R. Freeman, R. H. Storz, “Detection of Atomic Hydrogen and Deuterium by Resonant Three-Photon Ionization,” Appl. Phys. Lett. 33, 54 (1978).
    [CrossRef]
  17. C. P. Ausschnitt, G. C. Bjorklund, R. R. Freeman, “Hydrogen Plasma Diagnostics by Resonant Multiphoton Optogalvanic Spectroscopy,” Appl. Phys. Lett. 33, 851 (1978).
    [CrossRef]
  18. J. E. M. Goldsmith, “Resonant Multiphoton Optogalvanic Detection of Atomic Hydrogen in Flames,” Opt. Lett. 7, 437 (1982).
    [CrossRef] [PubMed]
  19. J. E. M. Goldsmith, “Flame Studies of Atomic Hydrogen and Oxygen Using Multiphoton Optogalvanic Spectroscopy,” in Proceedings, Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1984), p. 1331.
  20. J. T. Salmon, N. M. Laurendeau, “Quenching-Independent Fluorescence Measurements of Atomic Hydrogen with Photo-ionization Controlled-Loss Spectroscopy,” Opt. Lett. 11, 419 (1986).
    [CrossRef] [PubMed]
  21. J. T. Salmon, “Quantitative Fluorescence Measurements of Atomic Hydrogen in Flames via Two-Photon Absorption,” Ph.D. Thesis, Purdue U., West Lafayette, IN (1986).
  22. R. Loudon, The Quantum Theory of Light (Clarendon, Oxford, 1983).
  23. D. R. Bates, “An Approximate Formula for the Continuous Radiative Absorption Cross-Section of the Lighter Neutral Atoms and Positive and Negative Ions,” R. Astron. Soc. Mon. Notes 106, 423 (1946).
  24. J. G. Calvert, N. M. Pitts, Photochemistry (Wiley, New York, 1967).
  25. W. L. Wiese, M. W. Smith, B. M. Glennon, “Atomic Transition Probabilities,” Natl. Stand. Ref. Data Ser. Natl. Bur. Stand. 4, 1 (1966).
  26. J. M. Harris, F. E. Lytle, T. C. McCain, “Squirrel-Cage Photomultiplier Base Design for Measurement of Nanosecond Fluorescence Decays,” Anal. Chem. 48, 2095 (1976).
    [CrossRef]
  27. J. E. M. Goldsmith, N. M. Laurendeau, “Two-Photon-Excited Fluorescence Measurements of OH Concentration in a Hydrogen-Oxygen Flame,” Appl. Opt. 25, 276 (1986).
    [CrossRef] [PubMed]
  28. R. C. Peterson, “Kinetics of Hydrogen-Oxygen-Argon and Hydrogen-Oxygen-Argon-Pyridine Combustion using a Flat Flame Burner,” Ph.D. Thesis, Purdue U., West Lafayette, IN (1981).
  29. R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Laser-Saturated Fluorescence Measurements of OH in Atmospheric Pressure CH4/O2/N2 Flames Under Sooting and Non-Sooting Conditions,” Combust. Sci. Technol. 42, 259 (1985).
    [CrossRef]
  30. R. M. Fristrom, A. A. Westenberg, Flame Structure (McGraw-Hill, New York, 1965).
  31. M. Mauck, “Knife-Edge Profiling of Q-Switched Nd:YAG Laser Beam and Waist,” Appl. Opt. 18, 599 (1979).
    [CrossRef] [PubMed]
  32. J. V. Beck, K. J. Arnold, Parameter Estimation in Engineering and Science (Wiley, New York, 1977).
  33. A. Yariv, Introduction to Optical Electronics (Holt, Rinehart Winston, New York, 1976).
  34. U. Meier, K. Kohse-Hoinghaus, Th. Just, “H and O Atom Detection for Combustion Applications: Study of Quenching and Laser Photolysis Effects,” Chem. Phys. Lett. 126, 567 (1986).
    [CrossRef]
  35. W. E. Kaskan, “Excess Radical Concentrations and the Disappearance of Carbon Monoxide in Flame Gases from Some Lean Flames,” Combust. Flame 3, 49 (1959).
    [CrossRef]
  36. J. T. Salmon, N. M. Laurendeau, “Concentration Measurements of Atomic Hydrogen in Subatmospheric Premixed C2H4/O2/Ar Flat Flames,” submitted for publication.

1986

1985

R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Laser-Saturated Fluorescence Measurements of OH in Atmospheric Pressure CH4/O2/N2 Flames Under Sooting and Non-Sooting Conditions,” Combust. Sci. Technol. 42, 259 (1985).
[CrossRef]

J. E. M. Goldsmith, “Two-Step Saturated Fluorescence Detection of Atomic Hydrogen in Flames,” Opt. Lett. 10, 116 (1985).
[CrossRef] [PubMed]

J. E. M. Goldsmith, R. J. M. Anderson, “Imaging of Atomic Hydrogen in Flames with Two-Step Saturated Fluorescence Detection,” Appl. Opt. 24, 607 (1985).
[CrossRef] [PubMed]

1984

1983

1982

1981

J. Boker, R. R. Freeman, J. C. White, R. H. Storz, “Two-Photon Excitation of the n = 3 in Level in H and D Atoms,” Phys. Rev. A 24, 612 (1981).
[CrossRef]

1980

R. Wallenstein, “Generation of Narrowband Tunable VUV Radiation at the Lyman-α Wavelength,” Opt. Commun. 33, 119 (1980).
[CrossRef]

1979

A. Lifshitz, G. B. Skinner, D. R. Wood, “Resonance Absorption Measurements of Atom Concentrations in Reacting Gas Mixtures. I. Shapes of H and D Lyman-α Lines from Microwave Sources,” J. Chem. Phys. 70, 5607 (1979).
[CrossRef]

M. Mauck, “Knife-Edge Profiling of Q-Switched Nd:YAG Laser Beam and Waist,” Appl. Opt. 18, 599 (1979).
[CrossRef] [PubMed]

1978

G. C. Bjorklund, C. P. Ausschnitt, R. R. Freeman, R. H. Storz, “Detection of Atomic Hydrogen and Deuterium by Resonant Three-Photon Ionization,” Appl. Phys. Lett. 33, 54 (1978).
[CrossRef]

C. P. Ausschnitt, G. C. Bjorklund, R. R. Freeman, “Hydrogen Plasma Diagnostics by Resonant Multiphoton Optogalvanic Spectroscopy,” Appl. Phys. Lett. 33, 851 (1978).
[CrossRef]

1976

J. M. Harris, F. E. Lytle, T. C. McCain, “Squirrel-Cage Photomultiplier Base Design for Measurement of Nanosecond Fluorescence Decays,” Anal. Chem. 48, 2095 (1976).
[CrossRef]

1975

T. W. Hansch, S. A. Lee, R. Wallenstein, C. Wieman, “Doppler-Free Two-Photon Spectroscopy of Hydrogen 1S–2S*,” Phys. Rev. Lett. 34, 307 (1975).
[CrossRef]

1972

R. W. Dreyfus, P. Bogen, H. Langer, “Atomic H and D Concentrations and Velocities Measured with Harmonically Generated Lyman-α (1215A) Radiation,” AIP Conf. Proc. No. 90, 57 (1972).

1966

W. L. Wiese, M. W. Smith, B. M. Glennon, “Atomic Transition Probabilities,” Natl. Stand. Ref. Data Ser. Natl. Bur. Stand. 4, 1 (1966).

1965

M. J. McEwan, L. F. Phillips, “Use of Li/LiOH Method for Measuring [HI in Low-Temperature Flames,” Combust. Flame 9, 420 (1965).
[CrossRef]

1959

W. E. Kaskan, “Excess Radical Concentrations and the Disappearance of Carbon Monoxide in Flame Gases from Some Lean Flames,” Combust. Flame 3, 49 (1959).
[CrossRef]

1956

E. M. Bulewicz, C. G. James, T. M. Sugden, “Photometric Investigations of Alkali Metals in Hydrogen Flame Gases. II. The Study of Excess Concentrations of Hydrogen in Burnt Gas Mixtures,” Proc. Soc. London Ser. A 235, 89 (1956).
[CrossRef]

1946

D. R. Bates, “An Approximate Formula for the Continuous Radiative Absorption Cross-Section of the Lighter Neutral Atoms and Positive and Negative Ions,” R. Astron. Soc. Mon. Notes 106, 423 (1946).

Alden, M.

Anderson, R. J. M.

Appel, D.

D. Appel, J. P. Appleton, “Shock Tube Studies of Deuterium Dissociation and Oxidation by Atomic Resonance Absorption Spectrophotometry,” in Proceedings, Fifteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1974), p. 701.

Appleton, J. P.

D. Appel, J. P. Appleton, “Shock Tube Studies of Deuterium Dissociation and Oxidation by Atomic Resonance Absorption Spectrophotometry,” in Proceedings, Fifteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1974), p. 701.

Arnold, K. J.

J. V. Beck, K. J. Arnold, Parameter Estimation in Engineering and Science (Wiley, New York, 1977).

Ausschnitt, C. P.

C. P. Ausschnitt, G. C. Bjorklund, R. R. Freeman, “Hydrogen Plasma Diagnostics by Resonant Multiphoton Optogalvanic Spectroscopy,” Appl. Phys. Lett. 33, 851 (1978).
[CrossRef]

G. C. Bjorklund, C. P. Ausschnitt, R. R. Freeman, R. H. Storz, “Detection of Atomic Hydrogen and Deuterium by Resonant Three-Photon Ionization,” Appl. Phys. Lett. 33, 54 (1978).
[CrossRef]

Bates, D. R.

D. R. Bates, “An Approximate Formula for the Continuous Radiative Absorption Cross-Section of the Lighter Neutral Atoms and Positive and Negative Ions,” R. Astron. Soc. Mon. Notes 106, 423 (1946).

Beck, J. V.

J. V. Beck, K. J. Arnold, Parameter Estimation in Engineering and Science (Wiley, New York, 1977).

Bjorklund, G. C.

C. P. Ausschnitt, G. C. Bjorklund, R. R. Freeman, “Hydrogen Plasma Diagnostics by Resonant Multiphoton Optogalvanic Spectroscopy,” Appl. Phys. Lett. 33, 851 (1978).
[CrossRef]

G. C. Bjorklund, C. P. Ausschnitt, R. R. Freeman, R. H. Storz, “Detection of Atomic Hydrogen and Deuterium by Resonant Three-Photon Ionization,” Appl. Phys. Lett. 33, 54 (1978).
[CrossRef]

Blint, R. J.

S. J. Harris, A. M. Weiner, R. J. Blint, J. E. M. Goldsmith, “Concentration Profiles in Rich and Sooting Ethylene Flames,” in Proceedings, Twenty-first Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, in press, 1986).

Bogen, P.

R. W. Dreyfus, P. Bogen, H. Langer, “Atomic H and D Concentrations and Velocities Measured with Harmonically Generated Lyman-α (1215A) Radiation,” AIP Conf. Proc. No. 90, 57 (1972).

Boker, J.

J. Boker, R. R. Freeman, J. C. White, R. H. Storz, “Two-Photon Excitation of the n = 3 in Level in H and D Atoms,” Phys. Rev. A 24, 612 (1981).
[CrossRef]

Bulewicz, E. M.

E. M. Bulewicz, C. G. James, T. M. Sugden, “Photometric Investigations of Alkali Metals in Hydrogen Flame Gases. II. The Study of Excess Concentrations of Hydrogen in Burnt Gas Mixtures,” Proc. Soc. London Ser. A 235, 89 (1956).
[CrossRef]

Calvert, J. G.

J. G. Calvert, N. M. Pitts, Photochemistry (Wiley, New York, 1967).

Dreyfus, R. W.

R. W. Dreyfus, P. Bogen, H. Langer, “Atomic H and D Concentrations and Velocities Measured with Harmonically Generated Lyman-α (1215A) Radiation,” AIP Conf. Proc. No. 90, 57 (1972).

Freeman, R. R.

J. Boker, R. R. Freeman, J. C. White, R. H. Storz, “Two-Photon Excitation of the n = 3 in Level in H and D Atoms,” Phys. Rev. A 24, 612 (1981).
[CrossRef]

C. P. Ausschnitt, G. C. Bjorklund, R. R. Freeman, “Hydrogen Plasma Diagnostics by Resonant Multiphoton Optogalvanic Spectroscopy,” Appl. Phys. Lett. 33, 851 (1978).
[CrossRef]

G. C. Bjorklund, C. P. Ausschnitt, R. R. Freeman, R. H. Storz, “Detection of Atomic Hydrogen and Deuterium by Resonant Three-Photon Ionization,” Appl. Phys. Lett. 33, 54 (1978).
[CrossRef]

Fristrom, R. M.

R. M. Fristrom, A. A. Westenberg, Flame Structure (McGraw-Hill, New York, 1965).

Glennon, B. M.

W. L. Wiese, M. W. Smith, B. M. Glennon, “Atomic Transition Probabilities,” Natl. Stand. Ref. Data Ser. Natl. Bur. Stand. 4, 1 (1966).

Goldsmith, J. E. M.

Hansch, T. W.

T. W. Hansch, S. A. Lee, R. Wallenstein, C. Wieman, “Doppler-Free Two-Photon Spectroscopy of Hydrogen 1S–2S*,” Phys. Rev. Lett. 34, 307 (1975).
[CrossRef]

Harris, J. M.

J. M. Harris, F. E. Lytle, T. C. McCain, “Squirrel-Cage Photomultiplier Base Design for Measurement of Nanosecond Fluorescence Decays,” Anal. Chem. 48, 2095 (1976).
[CrossRef]

Harris, S. J.

S. J. Harris, A. M. Weiner, R. J. Blint, J. E. M. Goldsmith, “Concentration Profiles in Rich and Sooting Ethylene Flames,” in Proceedings, Twenty-first Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, in press, 1986).

Howard, J. B.

K. G. Neoh, J. B. Howard, A. F. Sarofim, “Soot Oxidation in Flames,” in Particulate Carbon: Formation During Combustion, E. C. Siegla, G. W. Smith, Eds. (Plenum, New York, 1981), p. 261.

James, C. G.

E. M. Bulewicz, C. G. James, T. M. Sugden, “Photometric Investigations of Alkali Metals in Hydrogen Flame Gases. II. The Study of Excess Concentrations of Hydrogen in Burnt Gas Mixtures,” Proc. Soc. London Ser. A 235, 89 (1956).
[CrossRef]

Just, Th.

U. Meier, K. Kohse-Hoinghaus, Th. Just, “H and O Atom Detection for Combustion Applications: Study of Quenching and Laser Photolysis Effects,” Chem. Phys. Lett. 126, 567 (1986).
[CrossRef]

Kaskan, W. E.

W. E. Kaskan, “Excess Radical Concentrations and the Disappearance of Carbon Monoxide in Flame Gases from Some Lean Flames,” Combust. Flame 3, 49 (1959).
[CrossRef]

King, G. B.

Kohse-Hoinghaus, K.

U. Meier, K. Kohse-Hoinghaus, Th. Just, “H and O Atom Detection for Combustion Applications: Study of Quenching and Laser Photolysis Effects,” Chem. Phys. Lett. 126, 567 (1986).
[CrossRef]

Langer, H.

R. W. Dreyfus, P. Bogen, H. Langer, “Atomic H and D Concentrations and Velocities Measured with Harmonically Generated Lyman-α (1215A) Radiation,” AIP Conf. Proc. No. 90, 57 (1972).

Laurendeau, N. M.

Lee, S. A.

T. W. Hansch, S. A. Lee, R. Wallenstein, C. Wieman, “Doppler-Free Two-Photon Spectroscopy of Hydrogen 1S–2S*,” Phys. Rev. Lett. 34, 307 (1975).
[CrossRef]

Lifshitz, A.

A. Lifshitz, G. B. Skinner, D. R. Wood, “Resonance Absorption Measurements of Atom Concentrations in Reacting Gas Mixtures. I. Shapes of H and D Lyman-α Lines from Microwave Sources,” J. Chem. Phys. 70, 5607 (1979).
[CrossRef]

Loudon, R.

R. Loudon, The Quantum Theory of Light (Clarendon, Oxford, 1983).

Lucht, R. P.

R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Laser-Saturated Fluorescence Measurements of OH in Atmospheric Pressure CH4/O2/N2 Flames Under Sooting and Non-Sooting Conditions,” Combust. Sci. Technol. 42, 259 (1985).
[CrossRef]

R. P. Lucht, J. T. Salmon, G. B. King, D. W. Sweeney, N. M. Laurendeau, “Two-Photon-Excited Fluorescence Measurement of Hydrogen Atoms in Flames,” Opt. Lett. 8, 365 (1983).
[CrossRef] [PubMed]

Lytle, F. E.

J. M. Harris, F. E. Lytle, T. C. McCain, “Squirrel-Cage Photomultiplier Base Design for Measurement of Nanosecond Fluorescence Decays,” Anal. Chem. 48, 2095 (1976).
[CrossRef]

Mauck, M.

McCain, T. C.

J. M. Harris, F. E. Lytle, T. C. McCain, “Squirrel-Cage Photomultiplier Base Design for Measurement of Nanosecond Fluorescence Decays,” Anal. Chem. 48, 2095 (1976).
[CrossRef]

McEwan, M. J.

M. J. McEwan, L. F. Phillips, “Use of Li/LiOH Method for Measuring [HI in Low-Temperature Flames,” Combust. Flame 9, 420 (1965).
[CrossRef]

Meier, U.

U. Meier, K. Kohse-Hoinghaus, Th. Just, “H and O Atom Detection for Combustion Applications: Study of Quenching and Laser Photolysis Effects,” Chem. Phys. Lett. 126, 567 (1986).
[CrossRef]

Neoh, K. G.

K. G. Neoh, J. B. Howard, A. F. Sarofim, “Soot Oxidation in Flames,” in Particulate Carbon: Formation During Combustion, E. C. Siegla, G. W. Smith, Eds. (Plenum, New York, 1981), p. 261.

Peterson, R. C.

R. C. Peterson, “Kinetics of Hydrogen-Oxygen-Argon and Hydrogen-Oxygen-Argon-Pyridine Combustion using a Flat Flame Burner,” Ph.D. Thesis, Purdue U., West Lafayette, IN (1981).

Phillips, L. F.

M. J. McEwan, L. F. Phillips, “Use of Li/LiOH Method for Measuring [HI in Low-Temperature Flames,” Combust. Flame 9, 420 (1965).
[CrossRef]

Pitts, N. M.

J. G. Calvert, N. M. Pitts, Photochemistry (Wiley, New York, 1967).

Salmon, J. T.

J. T. Salmon, N. M. Laurendeau, “Quenching-Independent Fluorescence Measurements of Atomic Hydrogen with Photo-ionization Controlled-Loss Spectroscopy,” Opt. Lett. 11, 419 (1986).
[CrossRef] [PubMed]

R. P. Lucht, J. T. Salmon, G. B. King, D. W. Sweeney, N. M. Laurendeau, “Two-Photon-Excited Fluorescence Measurement of Hydrogen Atoms in Flames,” Opt. Lett. 8, 365 (1983).
[CrossRef] [PubMed]

J. T. Salmon, “Quantitative Fluorescence Measurements of Atomic Hydrogen in Flames via Two-Photon Absorption,” Ph.D. Thesis, Purdue U., West Lafayette, IN (1986).

J. T. Salmon, N. M. Laurendeau, “Concentration Measurements of Atomic Hydrogen in Subatmospheric Premixed C2H4/O2/Ar Flat Flames,” submitted for publication.

Sarofim, A. F.

K. G. Neoh, J. B. Howard, A. F. Sarofim, “Soot Oxidation in Flames,” in Particulate Carbon: Formation During Combustion, E. C. Siegla, G. W. Smith, Eds. (Plenum, New York, 1981), p. 261.

Schawlow, A. L.

Skinner, G. B.

A. Lifshitz, G. B. Skinner, D. R. Wood, “Resonance Absorption Measurements of Atom Concentrations in Reacting Gas Mixtures. I. Shapes of H and D Lyman-α Lines from Microwave Sources,” J. Chem. Phys. 70, 5607 (1979).
[CrossRef]

Smith, M. W.

W. L. Wiese, M. W. Smith, B. M. Glennon, “Atomic Transition Probabilities,” Natl. Stand. Ref. Data Ser. Natl. Bur. Stand. 4, 1 (1966).

Storz, R. H.

J. Boker, R. R. Freeman, J. C. White, R. H. Storz, “Two-Photon Excitation of the n = 3 in Level in H and D Atoms,” Phys. Rev. A 24, 612 (1981).
[CrossRef]

G. C. Bjorklund, C. P. Ausschnitt, R. R. Freeman, R. H. Storz, “Detection of Atomic Hydrogen and Deuterium by Resonant Three-Photon Ionization,” Appl. Phys. Lett. 33, 54 (1978).
[CrossRef]

Sugden, T. M.

E. M. Bulewicz, C. G. James, T. M. Sugden, “Photometric Investigations of Alkali Metals in Hydrogen Flame Gases. II. The Study of Excess Concentrations of Hydrogen in Burnt Gas Mixtures,” Proc. Soc. London Ser. A 235, 89 (1956).
[CrossRef]

Svanberg, S.

Sweeney, D. W.

R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Laser-Saturated Fluorescence Measurements of OH in Atmospheric Pressure CH4/O2/N2 Flames Under Sooting and Non-Sooting Conditions,” Combust. Sci. Technol. 42, 259 (1985).
[CrossRef]

R. P. Lucht, J. T. Salmon, G. B. King, D. W. Sweeney, N. M. Laurendeau, “Two-Photon-Excited Fluorescence Measurement of Hydrogen Atoms in Flames,” Opt. Lett. 8, 365 (1983).
[CrossRef] [PubMed]

Wallenstein, R.

R. Wallenstein, “Generation of Narrowband Tunable VUV Radiation at the Lyman-α Wavelength,” Opt. Commun. 33, 119 (1980).
[CrossRef]

T. W. Hansch, S. A. Lee, R. Wallenstein, C. Wieman, “Doppler-Free Two-Photon Spectroscopy of Hydrogen 1S–2S*,” Phys. Rev. Lett. 34, 307 (1975).
[CrossRef]

Weiner, A. M.

S. J. Harris, A. M. Weiner, R. J. Blint, J. E. M. Goldsmith, “Concentration Profiles in Rich and Sooting Ethylene Flames,” in Proceedings, Twenty-first Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, in press, 1986).

Wendt, W.

Westenberg, A. A.

R. M. Fristrom, A. A. Westenberg, Flame Structure (McGraw-Hill, New York, 1965).

White, J. C.

J. Boker, R. R. Freeman, J. C. White, R. H. Storz, “Two-Photon Excitation of the n = 3 in Level in H and D Atoms,” Phys. Rev. A 24, 612 (1981).
[CrossRef]

Wieman, C.

T. W. Hansch, S. A. Lee, R. Wallenstein, C. Wieman, “Doppler-Free Two-Photon Spectroscopy of Hydrogen 1S–2S*,” Phys. Rev. Lett. 34, 307 (1975).
[CrossRef]

Wiese, W. L.

W. L. Wiese, M. W. Smith, B. M. Glennon, “Atomic Transition Probabilities,” Natl. Stand. Ref. Data Ser. Natl. Bur. Stand. 4, 1 (1966).

Wood, D. R.

A. Lifshitz, G. B. Skinner, D. R. Wood, “Resonance Absorption Measurements of Atom Concentrations in Reacting Gas Mixtures. I. Shapes of H and D Lyman-α Lines from Microwave Sources,” J. Chem. Phys. 70, 5607 (1979).
[CrossRef]

Yariv, A.

A. Yariv, Introduction to Optical Electronics (Holt, Rinehart Winston, New York, 1976).

Zhang, P.-L.

AIP Conf. Proc. No. 90

R. W. Dreyfus, P. Bogen, H. Langer, “Atomic H and D Concentrations and Velocities Measured with Harmonically Generated Lyman-α (1215A) Radiation,” AIP Conf. Proc. No. 90, 57 (1972).

Anal. Chem.

J. M. Harris, F. E. Lytle, T. C. McCain, “Squirrel-Cage Photomultiplier Base Design for Measurement of Nanosecond Fluorescence Decays,” Anal. Chem. 48, 2095 (1976).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

G. C. Bjorklund, C. P. Ausschnitt, R. R. Freeman, R. H. Storz, “Detection of Atomic Hydrogen and Deuterium by Resonant Three-Photon Ionization,” Appl. Phys. Lett. 33, 54 (1978).
[CrossRef]

C. P. Ausschnitt, G. C. Bjorklund, R. R. Freeman, “Hydrogen Plasma Diagnostics by Resonant Multiphoton Optogalvanic Spectroscopy,” Appl. Phys. Lett. 33, 851 (1978).
[CrossRef]

Chem. Phys. Lett.

U. Meier, K. Kohse-Hoinghaus, Th. Just, “H and O Atom Detection for Combustion Applications: Study of Quenching and Laser Photolysis Effects,” Chem. Phys. Lett. 126, 567 (1986).
[CrossRef]

Combust. Flame

W. E. Kaskan, “Excess Radical Concentrations and the Disappearance of Carbon Monoxide in Flame Gases from Some Lean Flames,” Combust. Flame 3, 49 (1959).
[CrossRef]

M. J. McEwan, L. F. Phillips, “Use of Li/LiOH Method for Measuring [HI in Low-Temperature Flames,” Combust. Flame 9, 420 (1965).
[CrossRef]

Combust. Sci. Technol.

R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Laser-Saturated Fluorescence Measurements of OH in Atmospheric Pressure CH4/O2/N2 Flames Under Sooting and Non-Sooting Conditions,” Combust. Sci. Technol. 42, 259 (1985).
[CrossRef]

J. Chem. Phys.

A. Lifshitz, G. B. Skinner, D. R. Wood, “Resonance Absorption Measurements of Atom Concentrations in Reacting Gas Mixtures. I. Shapes of H and D Lyman-α Lines from Microwave Sources,” J. Chem. Phys. 70, 5607 (1979).
[CrossRef]

Natl. Stand. Ref. Data Ser. Natl. Bur. Stand.

W. L. Wiese, M. W. Smith, B. M. Glennon, “Atomic Transition Probabilities,” Natl. Stand. Ref. Data Ser. Natl. Bur. Stand. 4, 1 (1966).

Opt. Commun.

R. Wallenstein, “Generation of Narrowband Tunable VUV Radiation at the Lyman-α Wavelength,” Opt. Commun. 33, 119 (1980).
[CrossRef]

Opt. Lett.

Phys. Rev. A

J. Boker, R. R. Freeman, J. C. White, R. H. Storz, “Two-Photon Excitation of the n = 3 in Level in H and D Atoms,” Phys. Rev. A 24, 612 (1981).
[CrossRef]

Phys. Rev. Lett.

T. W. Hansch, S. A. Lee, R. Wallenstein, C. Wieman, “Doppler-Free Two-Photon Spectroscopy of Hydrogen 1S–2S*,” Phys. Rev. Lett. 34, 307 (1975).
[CrossRef]

Proc. Soc. London Ser. A

E. M. Bulewicz, C. G. James, T. M. Sugden, “Photometric Investigations of Alkali Metals in Hydrogen Flame Gases. II. The Study of Excess Concentrations of Hydrogen in Burnt Gas Mixtures,” Proc. Soc. London Ser. A 235, 89 (1956).
[CrossRef]

R. Astron. Soc. Mon. Notes

D. R. Bates, “An Approximate Formula for the Continuous Radiative Absorption Cross-Section of the Lighter Neutral Atoms and Positive and Negative Ions,” R. Astron. Soc. Mon. Notes 106, 423 (1946).

Other

J. G. Calvert, N. M. Pitts, Photochemistry (Wiley, New York, 1967).

J. T. Salmon, “Quantitative Fluorescence Measurements of Atomic Hydrogen in Flames via Two-Photon Absorption,” Ph.D. Thesis, Purdue U., West Lafayette, IN (1986).

R. Loudon, The Quantum Theory of Light (Clarendon, Oxford, 1983).

R. C. Peterson, “Kinetics of Hydrogen-Oxygen-Argon and Hydrogen-Oxygen-Argon-Pyridine Combustion using a Flat Flame Burner,” Ph.D. Thesis, Purdue U., West Lafayette, IN (1981).

R. M. Fristrom, A. A. Westenberg, Flame Structure (McGraw-Hill, New York, 1965).

J. V. Beck, K. J. Arnold, Parameter Estimation in Engineering and Science (Wiley, New York, 1977).

A. Yariv, Introduction to Optical Electronics (Holt, Rinehart Winston, New York, 1976).

J. T. Salmon, N. M. Laurendeau, “Concentration Measurements of Atomic Hydrogen in Subatmospheric Premixed C2H4/O2/Ar Flat Flames,” submitted for publication.

D. Appel, J. P. Appleton, “Shock Tube Studies of Deuterium Dissociation and Oxidation by Atomic Resonance Absorption Spectrophotometry,” in Proceedings, Fifteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1974), p. 701.

S. J. Harris, A. M. Weiner, R. J. Blint, J. E. M. Goldsmith, “Concentration Profiles in Rich and Sooting Ethylene Flames,” in Proceedings, Twenty-first Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, in press, 1986).

K. G. Neoh, J. B. Howard, A. F. Sarofim, “Soot Oxidation in Flames,” in Particulate Carbon: Formation During Combustion, E. C. Siegla, G. W. Smith, Eds. (Plenum, New York, 1981), p. 261.

J. E. M. Goldsmith, “Flame Studies of Atomic Hydrogen and Oxygen Using Multiphoton Optogalvanic Spectroscopy,” in Proceedings, Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1984), p. 1331.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of the excitation/relaxation dynamics associated with fluorescence measurements of atomic hydrogen where the respective rate coefficients (s−1) are W13 (two-photonabsorption), Qij (total quenching from level i to level j), Aij (fluorescence), W3i (photoionization), and Wp (photolysis). Np is the number density of some photolyzing species. The wavelengths (nm) corresponding to excitation, ionization, and fluorescence are in parentheses.

Fig. 2
Fig. 2

Experimental apparatus for PICLS of atomic hydrogen.

Fig. 3
Fig. 3

Temporal profiles of, —, the fluorescence pulse; – – –, the square of the UV laser pulse; and, ….., the photoionizing laser pulse for (a) conventional fluorescence and (b) PICLS in the fuel-rich (Φ = 1.5) H2/O2/N2 flame at a pressure of 10 Torr.

Fig. 4
Fig. 4

Fluorescence signal as a function of the squared laser signal measured by a photodiode at 15 mm above the burner in the fuel-lean (Φ = 0.6) H2/O2/N2 flame at a pressure of 72 Torr. The solid curve is a nonlinear curve fit of parameters a and b to the function V f = a V L b.

Fig. 5
Fig. 5

Excitation scan of the two-photon absorption transition for atomic hydrogen in the fuel-lean (Φ = 0.6) H2/O2/N2 flame at a pressure of 20 Torr and a height of 20 mm above the burner. The solid curve is a Gaussian nonlinear least-squares curve fit to the data.

Fig. 6
Fig. 6

Vertical conventional fluorescence profiles of atomic hydrogen in the 80-Torr H2/O2 flame at Φ = 0.8.

Fig. 7
Fig. 7

Comparison of vertical number density profiles of atomic hydrogen obtained with PICLS, conventional fluorescence and partial equilibrium in the fuel-rich (Φ = 1.5) H2/O2/N2 flame at a pressure of 20 Torr. Also shown are the flame temperature and OH number density profiles that were used in the partial equilibrium calculations.

Fig. 8
Fig. 8

Vertical number density profile of atomic hydrogen from PICLS compared to partial equilibrium calculations in the fuel-rich (Φ = 1.5) H2/O2/N2 flame at a pressure of 72 Torr. Also shown are conventional fluorescence measurements matched with the PICLS data in the postflame zone and the flame temperature and OH number density profiles that were used in the partial equilibrium calculations.

Fig. 9
Fig. 9

Vertical number density profile of atomic hydrogen obtained with both PICLS and conventional fluorescence in the stoichiometric (Φ = 1.0) H2/O2/N2 flame at a pressure of 20 Torr. Also shown are flame temperature and OH number density profiles.

Fig. 10
Fig. 10

Vertical number density profile of atomic hydrogen obtained with both PICLS and conventional fluorescence in the stoichiometric (Φ = 1.0) H2/O2/N2 flame at a pressure of 72 Torr. Also shown are flame temperature and OH number density profiles.

Fig. 11
Fig. 11

Vertical number density profile of atomic hydrogen obtained with both PICLS and conventional fluorescence in the fuel-lean (Φ = 0.6) H2/O2N2 flame at a pressure of 72 Torr. Also shown are flame temperature and OH number density profiles.

Tables (2)

Tables Icon

Table I Flame Conditions used in Experiments

Tables Icon

Table II Pulse Parameters for the Two Beams In PICLS

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

d N 3 d t = N 1 W 13 - N 3 ( Q 3 + A 3 + W 3 i ) + N i R i 3 ,
W 3 i = σ 3 i I i h c ν i ,
d N 1 d t = N p W p ,
N 3 = N T W 13 / ( Q 3 + A 3 + W 3 i ) .
N 3 = N T W 13 / ( Q 3 + A 3 ) .
N T = N 3 W 3 i W 13 ,
V * = N 3 / W 13 ( N 3 / W 13 ) 0 = 1 1 + W 3 i / R 3 ,
N T = N 3 W 3 i W 13 1 1 - V * .
V f = β G Ω c V c f ,
f = h c ν f A f 4 π N 3 .
N T = C V f V i / V L 2 1 - V * ,
V * = V f / V L 2 ( V f / V L 2 ) 0 ,
H 2 + O H + OH ,
H 2 + OH H + H 2 O ,
O 2 + H O + OH .
V f = a V L b ,
CO + OH CO 2 + H

Metrics