Abstract

Observations of nonradial solar oscillations require Doppler velocity measurement at many points over the photosphere with a velocity resolution better than 1 m/s. An attractive form of imaging spectrophotometer for such a task utilizes a thin, solid, electrically tunable Fabry-Perot interference filter or etalon made of an electrooptic material such as lithium niobate (LiNbO3). The problems to be overcome in producing such an etalon for an imaging spectrophotometer are discussed and practical solutions demonstrated on the basis of measurements made on prototype devices.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Rust, “New Materials Applications in Solar Spectral Analysis,” Aust. J. Phys. 38, 781 (1985).
  2. R. K. Ulrich, “The Five Minute Oscillations on the Solar Surface,” Astrophys. J. 162, 993 (1970).
    [CrossRef]
  3. J. Leibacher, R. F. Stein, “A New Description of the Five-Minute Solar Oscillations,” Astrophys. Lett. 7, 191 (1970).
  4. F. L. Deubner, “Observations of Low Wavenumber Nonradial Eigenmodes of the Sun,” Astron. Astrophys. 44, 371 (1975).
  5. J. N. Bachall et al., “Standard Solar Models and the Uncertainties in Predicted Capture Rates of Solar Neutrinos,” Rev. Mod. Phys. 54, 767 (1982).
    [CrossRef]
  6. R. S. Weis, T. K. Gaylord, “Lithium Niobate: Summary of Its Physical Properties and Crystal Structure,” Appl. Phys. A 37, 191 (1985).
    [CrossRef]
  7. P. D. Atherton, N. K. Reay, J. Ring, “Tunable Fabry-Perot Filters,” Opt. Eng. 20, 806 (1981).
  8. P. Hariharan, B. F. Oreb, A. J. Leistner, “High Precision Digital Interferometry: Its Application to the Production of an Ultrathin Solid Fabry-Perot Etalon,” Opt. Eng. 23, 294 (1984).
    [CrossRef]
  9. B. F. Oreb, N. Brown, P. Hariharan, “Microcomputer System for Acquisition and Processing of Video Data,” Rev. Sci. Instrum. 53, 697 (1982).
    [CrossRef]
  10. J. L. Gardner, “Compact Fizeau Wavemeter,” Appl. Opt. 24, 3570 (1985).
    [CrossRef] [PubMed]
  11. E. H. Turner, “High Frequency Electro-Optic Coefficients of Lithium Niobate,” Appl. Phys. Lett. 8, 303 (1966).
    [CrossRef]
  12. J. E. Shaw, W. R. Blevin, “Instrument for the Absolute Measurement of Direct Spectral Reflectances at Normal Incidence,” J. Opt. Soc. Am. 54, 334 (1964).
    [CrossRef]
  13. J. G. Winter, “Control System of an Imaging Triple Fabry-Perot Filter,” Opt. Acta 31, 823 (1984).
    [CrossRef]

1985 (3)

D. M. Rust, “New Materials Applications in Solar Spectral Analysis,” Aust. J. Phys. 38, 781 (1985).

R. S. Weis, T. K. Gaylord, “Lithium Niobate: Summary of Its Physical Properties and Crystal Structure,” Appl. Phys. A 37, 191 (1985).
[CrossRef]

J. L. Gardner, “Compact Fizeau Wavemeter,” Appl. Opt. 24, 3570 (1985).
[CrossRef] [PubMed]

1984 (2)

J. G. Winter, “Control System of an Imaging Triple Fabry-Perot Filter,” Opt. Acta 31, 823 (1984).
[CrossRef]

P. Hariharan, B. F. Oreb, A. J. Leistner, “High Precision Digital Interferometry: Its Application to the Production of an Ultrathin Solid Fabry-Perot Etalon,” Opt. Eng. 23, 294 (1984).
[CrossRef]

1982 (2)

B. F. Oreb, N. Brown, P. Hariharan, “Microcomputer System for Acquisition and Processing of Video Data,” Rev. Sci. Instrum. 53, 697 (1982).
[CrossRef]

J. N. Bachall et al., “Standard Solar Models and the Uncertainties in Predicted Capture Rates of Solar Neutrinos,” Rev. Mod. Phys. 54, 767 (1982).
[CrossRef]

1981 (1)

P. D. Atherton, N. K. Reay, J. Ring, “Tunable Fabry-Perot Filters,” Opt. Eng. 20, 806 (1981).

1975 (1)

F. L. Deubner, “Observations of Low Wavenumber Nonradial Eigenmodes of the Sun,” Astron. Astrophys. 44, 371 (1975).

1970 (2)

R. K. Ulrich, “The Five Minute Oscillations on the Solar Surface,” Astrophys. J. 162, 993 (1970).
[CrossRef]

J. Leibacher, R. F. Stein, “A New Description of the Five-Minute Solar Oscillations,” Astrophys. Lett. 7, 191 (1970).

1966 (1)

E. H. Turner, “High Frequency Electro-Optic Coefficients of Lithium Niobate,” Appl. Phys. Lett. 8, 303 (1966).
[CrossRef]

1964 (1)

Atherton, P. D.

P. D. Atherton, N. K. Reay, J. Ring, “Tunable Fabry-Perot Filters,” Opt. Eng. 20, 806 (1981).

Bachall, J. N.

J. N. Bachall et al., “Standard Solar Models and the Uncertainties in Predicted Capture Rates of Solar Neutrinos,” Rev. Mod. Phys. 54, 767 (1982).
[CrossRef]

Blevin, W. R.

Brown, N.

B. F. Oreb, N. Brown, P. Hariharan, “Microcomputer System for Acquisition and Processing of Video Data,” Rev. Sci. Instrum. 53, 697 (1982).
[CrossRef]

Deubner, F. L.

F. L. Deubner, “Observations of Low Wavenumber Nonradial Eigenmodes of the Sun,” Astron. Astrophys. 44, 371 (1975).

Gardner, J. L.

Gaylord, T. K.

R. S. Weis, T. K. Gaylord, “Lithium Niobate: Summary of Its Physical Properties and Crystal Structure,” Appl. Phys. A 37, 191 (1985).
[CrossRef]

Hariharan, P.

P. Hariharan, B. F. Oreb, A. J. Leistner, “High Precision Digital Interferometry: Its Application to the Production of an Ultrathin Solid Fabry-Perot Etalon,” Opt. Eng. 23, 294 (1984).
[CrossRef]

B. F. Oreb, N. Brown, P. Hariharan, “Microcomputer System for Acquisition and Processing of Video Data,” Rev. Sci. Instrum. 53, 697 (1982).
[CrossRef]

Leibacher, J.

J. Leibacher, R. F. Stein, “A New Description of the Five-Minute Solar Oscillations,” Astrophys. Lett. 7, 191 (1970).

Leistner, A. J.

P. Hariharan, B. F. Oreb, A. J. Leistner, “High Precision Digital Interferometry: Its Application to the Production of an Ultrathin Solid Fabry-Perot Etalon,” Opt. Eng. 23, 294 (1984).
[CrossRef]

Oreb, B. F.

P. Hariharan, B. F. Oreb, A. J. Leistner, “High Precision Digital Interferometry: Its Application to the Production of an Ultrathin Solid Fabry-Perot Etalon,” Opt. Eng. 23, 294 (1984).
[CrossRef]

B. F. Oreb, N. Brown, P. Hariharan, “Microcomputer System for Acquisition and Processing of Video Data,” Rev. Sci. Instrum. 53, 697 (1982).
[CrossRef]

Reay, N. K.

P. D. Atherton, N. K. Reay, J. Ring, “Tunable Fabry-Perot Filters,” Opt. Eng. 20, 806 (1981).

Ring, J.

P. D. Atherton, N. K. Reay, J. Ring, “Tunable Fabry-Perot Filters,” Opt. Eng. 20, 806 (1981).

Rust, D. M.

D. M. Rust, “New Materials Applications in Solar Spectral Analysis,” Aust. J. Phys. 38, 781 (1985).

Shaw, J. E.

Stein, R. F.

J. Leibacher, R. F. Stein, “A New Description of the Five-Minute Solar Oscillations,” Astrophys. Lett. 7, 191 (1970).

Turner, E. H.

E. H. Turner, “High Frequency Electro-Optic Coefficients of Lithium Niobate,” Appl. Phys. Lett. 8, 303 (1966).
[CrossRef]

Ulrich, R. K.

R. K. Ulrich, “The Five Minute Oscillations on the Solar Surface,” Astrophys. J. 162, 993 (1970).
[CrossRef]

Weis, R. S.

R. S. Weis, T. K. Gaylord, “Lithium Niobate: Summary of Its Physical Properties and Crystal Structure,” Appl. Phys. A 37, 191 (1985).
[CrossRef]

Winter, J. G.

J. G. Winter, “Control System of an Imaging Triple Fabry-Perot Filter,” Opt. Acta 31, 823 (1984).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (1)

R. S. Weis, T. K. Gaylord, “Lithium Niobate: Summary of Its Physical Properties and Crystal Structure,” Appl. Phys. A 37, 191 (1985).
[CrossRef]

Appl. Phys. Lett. (1)

E. H. Turner, “High Frequency Electro-Optic Coefficients of Lithium Niobate,” Appl. Phys. Lett. 8, 303 (1966).
[CrossRef]

Astron. Astrophys. (1)

F. L. Deubner, “Observations of Low Wavenumber Nonradial Eigenmodes of the Sun,” Astron. Astrophys. 44, 371 (1975).

Astrophys. J. (1)

R. K. Ulrich, “The Five Minute Oscillations on the Solar Surface,” Astrophys. J. 162, 993 (1970).
[CrossRef]

Astrophys. Lett. (1)

J. Leibacher, R. F. Stein, “A New Description of the Five-Minute Solar Oscillations,” Astrophys. Lett. 7, 191 (1970).

Aust. J. Phys. (1)

D. M. Rust, “New Materials Applications in Solar Spectral Analysis,” Aust. J. Phys. 38, 781 (1985).

J. Opt. Soc. Am. (1)

Opt. Acta (1)

J. G. Winter, “Control System of an Imaging Triple Fabry-Perot Filter,” Opt. Acta 31, 823 (1984).
[CrossRef]

Opt. Eng. (2)

P. D. Atherton, N. K. Reay, J. Ring, “Tunable Fabry-Perot Filters,” Opt. Eng. 20, 806 (1981).

P. Hariharan, B. F. Oreb, A. J. Leistner, “High Precision Digital Interferometry: Its Application to the Production of an Ultrathin Solid Fabry-Perot Etalon,” Opt. Eng. 23, 294 (1984).
[CrossRef]

Rev. Mod. Phys. (1)

J. N. Bachall et al., “Standard Solar Models and the Uncertainties in Predicted Capture Rates of Solar Neutrinos,” Rev. Mod. Phys. 54, 767 (1982).
[CrossRef]

Rev. Sci. Instrum. (1)

B. F. Oreb, N. Brown, P. Hariharan, “Microcomputer System for Acquisition and Processing of Video Data,” Rev. Sci. Instrum. 53, 697 (1982).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Thin, solid electrically tunable Fabry-Perot interference filter (etalon).

Fig. 2
Fig. 2

Electrically tunable etalon mounted in a protective enclosure.

Fig. 3
Fig. 3

Transmission spectra of a Fabry-Perot etalon as a function of coating reflectance R.

Fig. 4
Fig. 4

Schematic drawing of the SOI (solar oscillations imager) showing blocking filters (B), tunable Fabry-Perot filter (F), telescope objective (T), diode array camera (D), beam splitter (BS), diode laser (L), cesium laser-stabilization cell (CC), passband servo detector (SD), and servo system amplifier (SA).

Fig. 5
Fig. 5

Doppler velocity measurement of shift ΔλD of Fraunhofer line (f) from its rest position λ0. Intensities IB and IR measured at passband positions (b) and (r), symmetrically placed at ±Δλ on either side of λ0.

Fig. 6
Fig. 6

Sections showing thickness nonuniformity of etalon ET2 measured by a digital interferometer: (a) horizontal and (b) vertical profiles. Smallest steps represent increments of 1.38 nm in actual thickness.

Fig. 7
Fig. 7

Fringe profiles for etalon ET1: (a) for beam obscured as shown and (b) for central 15-mm diameter.

Fig. 8
Fig. 8

Fringe profiles for etalon ET2 for central 30 mm, showing fringe shifts for ±500 V applied across the etalon.

Tables (1)

Tables Icon

Table I Summary of Etalon Measurements

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

d n = - ( 1 / 2 ) ( n 0 3 ) ( r 13 T ) E Z ,
m λ = 2 n d cos θ ,
N e = FSR / Δ λ .
FSR = λ 2 / 2 n d .
N e - 2 = N c - 2 + N t - 2 + N r - 2 .
N c = - π / ln R ,
N t = λ / 2 δ t s ,
N r = λ / 4.7 δ t r .
T m = [ 1 - A / ( 1 - R ) ] 2 .
I ( u ) = I P - ( I P - I 0 ) exp ( - u 2 ) ,
I R = I ( u - w ) = I ( u ) - w ( d I / d u ) ,
I B = I ( u + w ) = I ( u ) + w ( d I / d u ) ,
I B - I R = 2 w ( d I / d u ) = K w ,
ν = c ( I B - I R ) Δ λ 0 / ( K λ 0 ) .

Metrics