Abstract

We have developed an optical integrated circuit waveguide technology based on conventional Si processing. We demonstrate waveguide losses of <0.3 dB/cm in the 1.3–1.6-μm wavelength range. We use a high refractive-index core of Si3N4 surrounded by SiO2 cladding layers, which provides a highly confined optical mode adequate for butt coupling to channel substrate buried heterostructure lasers. We report the first IR transmission experiments in these waveguides and find two absorption peaks associated with H in SiO2 and Si3N4 layers at 1.40 and 1.52 μm, respectively. The peak absorptions are 2.2 and 1.2 dB/cm, respectively, and these peaks can be largely removed by annealing at 1100–1200°C.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Stutius, W. Streifer, “Silicon Nitride Films on Silicon for Optical Waveguides,” Appl. Opt. 16, 3218 (1977).
    [Crossref] [PubMed]
  2. S. Valette, P. Mottier, J. Lizet, P. Gidon, “Integrated Optics on Silicon Substrate: a Way to Achieve Complex Optical Circuits,” Proc. Soc. Photo-Opt. Instrum. Eng. 651, Integrated Optical Circuit Engineering III94 (1986).
  3. M. Takato, M. Yosu, M. Kawachi, “Low-Loss High-Silica Single-Mode Channel Waveguides,” Electron. Lett. 22, 321 (1986).
    [Crossref]
  4. B. G. Bagley, C. R. Kurkjian, J. W. Mitchel, G. E. Peterson, A. R. Tynes, “Materials Properties and Choices,” in Optical Fiber Telecommunications, S. E. Miller, A. G. Cheynoweth, Eds. (Academic, New York, 1979), Chap. 7, p. 176.
  5. N. A. Olsson et al., “Performance Characteristics of 1.5 μm Single Frequency Semiconductor Laser with External Waveguide Bragg Reflector,” IEEE J. Quantum Electron. (submitted).
  6. H. Ishikawa, H. Imai, T. Tanzhashi, Y. Nishitani, M. Takusawara, K. Takahei, “V-Grooved Substrate Buried Heterostructure InGaAsP/InP Laser,” Electron. Lett. 17, 445 (1981).
    [Crossref]
  7. The mode index n(x), found by solving the slab guide problem for the vertical mode in the y direction, on and off the mesa, is used as an effective refractive index to determine the mode confined to the mesa in the x direction. This mode is determined by again solving the slab guide problem.
  8. S. Sakoguchi, H. Itoh, F. Hanawa, T. Kimura, “Drawing-Induced 1.53 μm Wavelength Optical Loss in Single Mode Fibers Drawn at High Speeds,” Appl. Phys. Lett. 47, 344 (1985).
    [Crossref]

1986 (2)

S. Valette, P. Mottier, J. Lizet, P. Gidon, “Integrated Optics on Silicon Substrate: a Way to Achieve Complex Optical Circuits,” Proc. Soc. Photo-Opt. Instrum. Eng. 651, Integrated Optical Circuit Engineering III94 (1986).

M. Takato, M. Yosu, M. Kawachi, “Low-Loss High-Silica Single-Mode Channel Waveguides,” Electron. Lett. 22, 321 (1986).
[Crossref]

1985 (1)

S. Sakoguchi, H. Itoh, F. Hanawa, T. Kimura, “Drawing-Induced 1.53 μm Wavelength Optical Loss in Single Mode Fibers Drawn at High Speeds,” Appl. Phys. Lett. 47, 344 (1985).
[Crossref]

1981 (1)

H. Ishikawa, H. Imai, T. Tanzhashi, Y. Nishitani, M. Takusawara, K. Takahei, “V-Grooved Substrate Buried Heterostructure InGaAsP/InP Laser,” Electron. Lett. 17, 445 (1981).
[Crossref]

1977 (1)

Bagley, B. G.

B. G. Bagley, C. R. Kurkjian, J. W. Mitchel, G. E. Peterson, A. R. Tynes, “Materials Properties and Choices,” in Optical Fiber Telecommunications, S. E. Miller, A. G. Cheynoweth, Eds. (Academic, New York, 1979), Chap. 7, p. 176.

Gidon, P.

S. Valette, P. Mottier, J. Lizet, P. Gidon, “Integrated Optics on Silicon Substrate: a Way to Achieve Complex Optical Circuits,” Proc. Soc. Photo-Opt. Instrum. Eng. 651, Integrated Optical Circuit Engineering III94 (1986).

Hanawa, F.

S. Sakoguchi, H. Itoh, F. Hanawa, T. Kimura, “Drawing-Induced 1.53 μm Wavelength Optical Loss in Single Mode Fibers Drawn at High Speeds,” Appl. Phys. Lett. 47, 344 (1985).
[Crossref]

Imai, H.

H. Ishikawa, H. Imai, T. Tanzhashi, Y. Nishitani, M. Takusawara, K. Takahei, “V-Grooved Substrate Buried Heterostructure InGaAsP/InP Laser,” Electron. Lett. 17, 445 (1981).
[Crossref]

Ishikawa, H.

H. Ishikawa, H. Imai, T. Tanzhashi, Y. Nishitani, M. Takusawara, K. Takahei, “V-Grooved Substrate Buried Heterostructure InGaAsP/InP Laser,” Electron. Lett. 17, 445 (1981).
[Crossref]

Itoh, H.

S. Sakoguchi, H. Itoh, F. Hanawa, T. Kimura, “Drawing-Induced 1.53 μm Wavelength Optical Loss in Single Mode Fibers Drawn at High Speeds,” Appl. Phys. Lett. 47, 344 (1985).
[Crossref]

Kawachi, M.

M. Takato, M. Yosu, M. Kawachi, “Low-Loss High-Silica Single-Mode Channel Waveguides,” Electron. Lett. 22, 321 (1986).
[Crossref]

Kimura, T.

S. Sakoguchi, H. Itoh, F. Hanawa, T. Kimura, “Drawing-Induced 1.53 μm Wavelength Optical Loss in Single Mode Fibers Drawn at High Speeds,” Appl. Phys. Lett. 47, 344 (1985).
[Crossref]

Kurkjian, C. R.

B. G. Bagley, C. R. Kurkjian, J. W. Mitchel, G. E. Peterson, A. R. Tynes, “Materials Properties and Choices,” in Optical Fiber Telecommunications, S. E. Miller, A. G. Cheynoweth, Eds. (Academic, New York, 1979), Chap. 7, p. 176.

Lizet, J.

S. Valette, P. Mottier, J. Lizet, P. Gidon, “Integrated Optics on Silicon Substrate: a Way to Achieve Complex Optical Circuits,” Proc. Soc. Photo-Opt. Instrum. Eng. 651, Integrated Optical Circuit Engineering III94 (1986).

Mitchel, J. W.

B. G. Bagley, C. R. Kurkjian, J. W. Mitchel, G. E. Peterson, A. R. Tynes, “Materials Properties and Choices,” in Optical Fiber Telecommunications, S. E. Miller, A. G. Cheynoweth, Eds. (Academic, New York, 1979), Chap. 7, p. 176.

Mottier, P.

S. Valette, P. Mottier, J. Lizet, P. Gidon, “Integrated Optics on Silicon Substrate: a Way to Achieve Complex Optical Circuits,” Proc. Soc. Photo-Opt. Instrum. Eng. 651, Integrated Optical Circuit Engineering III94 (1986).

Nishitani, Y.

H. Ishikawa, H. Imai, T. Tanzhashi, Y. Nishitani, M. Takusawara, K. Takahei, “V-Grooved Substrate Buried Heterostructure InGaAsP/InP Laser,” Electron. Lett. 17, 445 (1981).
[Crossref]

Olsson, N. A.

N. A. Olsson et al., “Performance Characteristics of 1.5 μm Single Frequency Semiconductor Laser with External Waveguide Bragg Reflector,” IEEE J. Quantum Electron. (submitted).

Peterson, G. E.

B. G. Bagley, C. R. Kurkjian, J. W. Mitchel, G. E. Peterson, A. R. Tynes, “Materials Properties and Choices,” in Optical Fiber Telecommunications, S. E. Miller, A. G. Cheynoweth, Eds. (Academic, New York, 1979), Chap. 7, p. 176.

Sakoguchi, S.

S. Sakoguchi, H. Itoh, F. Hanawa, T. Kimura, “Drawing-Induced 1.53 μm Wavelength Optical Loss in Single Mode Fibers Drawn at High Speeds,” Appl. Phys. Lett. 47, 344 (1985).
[Crossref]

Streifer, W.

Stutius, W.

Takahei, K.

H. Ishikawa, H. Imai, T. Tanzhashi, Y. Nishitani, M. Takusawara, K. Takahei, “V-Grooved Substrate Buried Heterostructure InGaAsP/InP Laser,” Electron. Lett. 17, 445 (1981).
[Crossref]

Takato, M.

M. Takato, M. Yosu, M. Kawachi, “Low-Loss High-Silica Single-Mode Channel Waveguides,” Electron. Lett. 22, 321 (1986).
[Crossref]

Takusawara, M.

H. Ishikawa, H. Imai, T. Tanzhashi, Y. Nishitani, M. Takusawara, K. Takahei, “V-Grooved Substrate Buried Heterostructure InGaAsP/InP Laser,” Electron. Lett. 17, 445 (1981).
[Crossref]

Tanzhashi, T.

H. Ishikawa, H. Imai, T. Tanzhashi, Y. Nishitani, M. Takusawara, K. Takahei, “V-Grooved Substrate Buried Heterostructure InGaAsP/InP Laser,” Electron. Lett. 17, 445 (1981).
[Crossref]

Tynes, A. R.

B. G. Bagley, C. R. Kurkjian, J. W. Mitchel, G. E. Peterson, A. R. Tynes, “Materials Properties and Choices,” in Optical Fiber Telecommunications, S. E. Miller, A. G. Cheynoweth, Eds. (Academic, New York, 1979), Chap. 7, p. 176.

Valette, S.

S. Valette, P. Mottier, J. Lizet, P. Gidon, “Integrated Optics on Silicon Substrate: a Way to Achieve Complex Optical Circuits,” Proc. Soc. Photo-Opt. Instrum. Eng. 651, Integrated Optical Circuit Engineering III94 (1986).

Yosu, M.

M. Takato, M. Yosu, M. Kawachi, “Low-Loss High-Silica Single-Mode Channel Waveguides,” Electron. Lett. 22, 321 (1986).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. Sakoguchi, H. Itoh, F. Hanawa, T. Kimura, “Drawing-Induced 1.53 μm Wavelength Optical Loss in Single Mode Fibers Drawn at High Speeds,” Appl. Phys. Lett. 47, 344 (1985).
[Crossref]

Electron. Lett. (2)

H. Ishikawa, H. Imai, T. Tanzhashi, Y. Nishitani, M. Takusawara, K. Takahei, “V-Grooved Substrate Buried Heterostructure InGaAsP/InP Laser,” Electron. Lett. 17, 445 (1981).
[Crossref]

M. Takato, M. Yosu, M. Kawachi, “Low-Loss High-Silica Single-Mode Channel Waveguides,” Electron. Lett. 22, 321 (1986).
[Crossref]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

S. Valette, P. Mottier, J. Lizet, P. Gidon, “Integrated Optics on Silicon Substrate: a Way to Achieve Complex Optical Circuits,” Proc. Soc. Photo-Opt. Instrum. Eng. 651, Integrated Optical Circuit Engineering III94 (1986).

Other (3)

B. G. Bagley, C. R. Kurkjian, J. W. Mitchel, G. E. Peterson, A. R. Tynes, “Materials Properties and Choices,” in Optical Fiber Telecommunications, S. E. Miller, A. G. Cheynoweth, Eds. (Academic, New York, 1979), Chap. 7, p. 176.

N. A. Olsson et al., “Performance Characteristics of 1.5 μm Single Frequency Semiconductor Laser with External Waveguide Bragg Reflector,” IEEE J. Quantum Electron. (submitted).

The mode index n(x), found by solving the slab guide problem for the vertical mode in the y direction, on and off the mesa, is used as an effective refractive index to determine the mode confined to the mesa in the x direction. This mode is determined by again solving the slab guide problem.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Calculated coupling loss as a function of the vertical transverse position for several axial displacements z. The laser mode was assumed to be Gaussian with a 1/e power diameter of 0.47 μm.

Fig. 2
Fig. 2

Calculated mesa etch depth required for 75% confinement of power within the mesa and lateral butt coupling loss vs mesa width W. The laser mode is assumed to be Gaussian with a 1/e power diameter of 0.55 μm.

Fig. 3
Fig. 3

Calculated leakage loss into the Si substrate vs base layer thickness.

Fig. 4
Fig. 4

Relative transmission spectra vs wavelength showing the loss leaks at 1.40 and 1.52 μm for an unannealed waveguide 3.15 cm long.

Fig. 5
Fig. 5

Reduction of absorption loss of the 1.40-μm peak with annealing. The points showing absolute measurements include scattering losses and for this reason are displaced above the other data.

Fig. 6
Fig. 6

Reduction of absorption loss of the 1.52-μm peak with annealing. The points showing absolute measurements include scattering losses and for this reason are displaced above the other data.

Fig. 7
Fig. 7

Transmission spectrum of sample annealed at 1200°C for 1 h. The base line error is ±0.1 dB/cm.

Metrics