Abstract

Three methods for averaging differential absorption lidar (DIAL) measurements are discussed. They are compared using experimental data acquired with a dual-laser direct-detection DIAL system operating in the near UV using atmospheric backscatter. The data set was acquired with the two lasers tuned to the same wavelength to eliminate any spectral variations and fluctuations of differential absorbers from the measurement. The results are compared by evaluating both the standard deviations and the means of the integrated columns. The results suggest that shot noise on the backscattered signals dominates the measurement statistics and considerably reduces the necessity for short interpulse delay times.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Measures, Laser Remote Sensing (Wiley, New York, 1984).
  2. J. W. Goodman, Statistical Optics (Wiley, New York, 1985).
  3. R. M. Schotland, “Errors in the Lidar Measurement of Atmospheric Gases by Differential Absorption,” J. Appl. Meteorol. 13, 71 (1974).
    [CrossRef]
  4. R. L. Byer, M. Garbuny, “Pollutant Detection by Absorption Using Mie Scattering and Topographic Targets as Retroreflectors,” Appl. Opt. 12, 1496 (1973).
    [CrossRef] [PubMed]
  5. N. Menyuk, D. K. Killinger, “Temporal Correlation Measurements of Pulsed Dual CO2 Lidar Returns,” Opt. Lett. 6, 301 (1981).
    [CrossRef] [PubMed]
  6. N. Menyuk, D. K. Killinger, C. R. Menyuk, “Limitations of Signal Averaging due to Temporal Correlation in Laser Remote-Sensing Measurements,” Appl. Opt. 21, 3377 (1982).
    [CrossRef] [PubMed]
  7. N. Menyuk, D. K. Killinger, C. R. Menyuk, “Error Reduction in Laser Remote Sensing: Combined Effects of Cross Correlation and Signal Averaging,” Appl. Opt. 24, 118 (1985).
    [CrossRef] [PubMed]
  8. W. B. Grant, “He–Ne and cw CO2 Laser Long-Path Systems for Gas Detection,” Appl. Opt. 25, 709 (1986).
    [CrossRef] [PubMed]
  9. R. E. Warren, J. Pelon, M. J. T. Milton, “Dial Signal Processing,” in Dial Data Processing and Collection Techniques, E. V. Browell, P. T. Woods, Eds. (NASA Reference publication1987).
  10. V. E. Zuev, Yu. S. Makushkin, V. N. Marichev, A. A. Mitsel, V. V. Zuev, “Lidar Differential Absorption and Scattering Technique: Theory,” Appl. Opt. 22, 3733 (1983).
    [CrossRef] [PubMed]
  11. W. Staehr, W. Lahmann, C. Weitkamp, “Range-Resolved Differential Absorption Lidar: Optimization of Range and Sensitivity,” Appl. Opt. 24, 1950 (1985).
    [CrossRef] [PubMed]
  12. N. Sugimoto, I. Matsui, H. Shimizu, N. Takeuchi, “Experimental Estimation of the Error due to the Fluctuation of Aerosol Backscattering in Dial Measurements,” in Dial Data Processing and Collection Techniques, E. V. Browell, P. T. Woods, Eds. (NASA Reference publication1987).

1986 (1)

1985 (2)

1983 (1)

1982 (1)

1981 (1)

1974 (1)

R. M. Schotland, “Errors in the Lidar Measurement of Atmospheric Gases by Differential Absorption,” J. Appl. Meteorol. 13, 71 (1974).
[CrossRef]

1973 (1)

Byer, R. L.

Garbuny, M.

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley, New York, 1985).

Grant, W. B.

Killinger, D. K.

Lahmann, W.

Makushkin, Yu. S.

Marichev, V. N.

Matsui, I.

N. Sugimoto, I. Matsui, H. Shimizu, N. Takeuchi, “Experimental Estimation of the Error due to the Fluctuation of Aerosol Backscattering in Dial Measurements,” in Dial Data Processing and Collection Techniques, E. V. Browell, P. T. Woods, Eds. (NASA Reference publication1987).

Measures, R. M.

R. M. Measures, Laser Remote Sensing (Wiley, New York, 1984).

Menyuk, C. R.

Menyuk, N.

Milton, M. J. T.

R. E. Warren, J. Pelon, M. J. T. Milton, “Dial Signal Processing,” in Dial Data Processing and Collection Techniques, E. V. Browell, P. T. Woods, Eds. (NASA Reference publication1987).

Mitsel, A. A.

Pelon, J.

R. E. Warren, J. Pelon, M. J. T. Milton, “Dial Signal Processing,” in Dial Data Processing and Collection Techniques, E. V. Browell, P. T. Woods, Eds. (NASA Reference publication1987).

Schotland, R. M.

R. M. Schotland, “Errors in the Lidar Measurement of Atmospheric Gases by Differential Absorption,” J. Appl. Meteorol. 13, 71 (1974).
[CrossRef]

Shimizu, H.

N. Sugimoto, I. Matsui, H. Shimizu, N. Takeuchi, “Experimental Estimation of the Error due to the Fluctuation of Aerosol Backscattering in Dial Measurements,” in Dial Data Processing and Collection Techniques, E. V. Browell, P. T. Woods, Eds. (NASA Reference publication1987).

Staehr, W.

Sugimoto, N.

N. Sugimoto, I. Matsui, H. Shimizu, N. Takeuchi, “Experimental Estimation of the Error due to the Fluctuation of Aerosol Backscattering in Dial Measurements,” in Dial Data Processing and Collection Techniques, E. V. Browell, P. T. Woods, Eds. (NASA Reference publication1987).

Takeuchi, N.

N. Sugimoto, I. Matsui, H. Shimizu, N. Takeuchi, “Experimental Estimation of the Error due to the Fluctuation of Aerosol Backscattering in Dial Measurements,” in Dial Data Processing and Collection Techniques, E. V. Browell, P. T. Woods, Eds. (NASA Reference publication1987).

Warren, R. E.

R. E. Warren, J. Pelon, M. J. T. Milton, “Dial Signal Processing,” in Dial Data Processing and Collection Techniques, E. V. Browell, P. T. Woods, Eds. (NASA Reference publication1987).

Weitkamp, C.

Zuev, V. E.

Zuev, V. V.

Appl. Opt. (6)

J. Appl. Meteorol. (1)

R. M. Schotland, “Errors in the Lidar Measurement of Atmospheric Gases by Differential Absorption,” J. Appl. Meteorol. 13, 71 (1974).
[CrossRef]

Opt. Lett. (1)

Other (4)

R. E. Warren, J. Pelon, M. J. T. Milton, “Dial Signal Processing,” in Dial Data Processing and Collection Techniques, E. V. Browell, P. T. Woods, Eds. (NASA Reference publication1987).

N. Sugimoto, I. Matsui, H. Shimizu, N. Takeuchi, “Experimental Estimation of the Error due to the Fluctuation of Aerosol Backscattering in Dial Measurements,” in Dial Data Processing and Collection Techniques, E. V. Browell, P. T. Woods, Eds. (NASA Reference publication1987).

R. M. Measures, Laser Remote Sensing (Wiley, New York, 1984).

J. W. Goodman, Statistical Optics (Wiley, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of NPL DIAL system.

Fig. 2
Fig. 2

Standard deviation of column vs number of pulse pairs averaged for the 200–800-m range interval.

Fig. 3
Fig. 3

Standard deviation of column vs number of pulse pairs averaged for the 800–1500-m range interval.

Fig. 4
Fig. 4

Mean value of column vs number of pulse pairs averaged for the 200–800-m range interval.

Fig. 5
Fig. 5

Mean value of column vs number of pulse pairs averaged for the 800–1500-m range interval.

Fig. 6
Fig. 6

Standard deviation of column vs number of pulse pairs averaged for the 800–1500-m range interval for the single-wavelength continuous and alternate wavelength acquisition methods.

Tables (1)

Tables Icon

Table I Effect of Different Background Subtraction Methods on Column Variance in Different Range Intervals

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

P x ( r ) = E x D x r 2 B x ( r ) × exp { - 2 0 r [ A x ( r ) + α x C ( r ) ] d r } ,
C L ( r ) = 0 r C ( r ) d r = 1 2 Δ α log S x ( r ) S y ( r ) ,
C L 1 ( r ) = 1 2 Δ α 1 N i = 1 N log S ON , i ( r ) S OFF , i ( r ) ,
C L 2 ( r ) = 1 2 Δ α log i S ON , i ( r ) i S OFF , i ( r ) ,
C L 3 ( r ) = 1 2 Δ α log 1 N i = 1 N S ON , i ( r ) S OFF , i ( r ) .
C L ¯ = 1 M r = r 0 r 0 + ( M - 1 ) Δ r C L ( r ) .
σ 2 = 1 M r = r 0 r 0 + ( M - 1 ) Δ r [ C L ( r ) - C L ¯ ] 2 .

Metrics