Abstract

We continue examination of the photon correlation properties of silicon avalanche photodiodes operated in photon-counting mode by extending their operation from that of passive quenching1 to active quenching, yielding shorter dead time and higher frequency operation.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. W. Brown, K. D. Ridley, J. G. Rarity, “Characterization of Silicon Avalanche Photodiodes for Photon Correlation Measurements, I. Passive Quenching,” Appl. Opt. 25, 4122 (1986).
    [CrossRef] [PubMed]
  2. RCA data sheet, C30921S Silicon Avalanche Photodiodes, May1984.
  3. H. Z. Cummins, E. R. Pike, Eds, Photon Correlation Spectroscopy and Velocimetry (Plenum, New York, 1977).
  4. N. N. Armencha, D. V. Tarkhin, “Mechanisms Governing the Frequency of Current Pulse Formation in Avalanche Silicon Photodiodes,” Sov. Phys. Semicond. 5, 235 (1971).
  5. S. Cova, A. Longoni, A. Andreoni, “Towards Picosecond Resolution With Single Photon Avalanche-Diodes,” Rev. Sci. Instrum. 52, 408 (1981).
    [CrossRef]
  6. S. Cova, A. Longoni, G. Ripamonti, “Active Quenching and Gating Circuits for Single-Photon Avalanche Photodiodes (SPAD’s),” IEEE Trans. Nucl. Sci. NS-29, 599 (1982).
    [CrossRef]
  7. B. F. Levine, C. G. Bethea, “Detection of Single 1.3 μm Photons at 45 Mbit/s,” Electron. Lett. 20, 269 (1984).
    [CrossRef]
  8. T. E. Ingerson, R. J. Kearney, R. L. Coulter, “Photon Counting with Photodiodes,” Appl. Opt. 22, 2013 (1983).
    [CrossRef] [PubMed]
  9. J. G. Rarity, K. D. Ridley, P. R. Tapster, “An Absolute Measurement of Detector Quantum Efficiency using Parametric Downconversion,” submitted to Applied Optics, 1987.
    [CrossRef]
  10. R. G. W. Brown et al., “A Combined Fringe and Two-Spot Backscatter LDV with 10 ns Burst Correlator Processor,” Phys. Scripta 19, 365 (1979).
    [CrossRef]
  11. E. O. Schulz-DuBois, Ed., Photon Correlation Techniques in Fluid Mechanics (Springer, New York, 1983).
  12. J. G. McWhirter, “A Well-Conditioned Cubic B-Spline Model for Processing Laser Anemometry Data,” Opt. Acta 28, 1453 (1981).
    [CrossRef]
  13. K. Schatzel, “Dead Time Correction of Photon Correlation Functions,” Technical Digest, Optical Society of America Spring 1986 Meeting on Quantum Limited Imaging and Image Processing, Honolulu, p. 96.

1986 (1)

1984 (1)

B. F. Levine, C. G. Bethea, “Detection of Single 1.3 μm Photons at 45 Mbit/s,” Electron. Lett. 20, 269 (1984).
[CrossRef]

1983 (1)

1982 (1)

S. Cova, A. Longoni, G. Ripamonti, “Active Quenching and Gating Circuits for Single-Photon Avalanche Photodiodes (SPAD’s),” IEEE Trans. Nucl. Sci. NS-29, 599 (1982).
[CrossRef]

1981 (2)

S. Cova, A. Longoni, A. Andreoni, “Towards Picosecond Resolution With Single Photon Avalanche-Diodes,” Rev. Sci. Instrum. 52, 408 (1981).
[CrossRef]

J. G. McWhirter, “A Well-Conditioned Cubic B-Spline Model for Processing Laser Anemometry Data,” Opt. Acta 28, 1453 (1981).
[CrossRef]

1979 (1)

R. G. W. Brown et al., “A Combined Fringe and Two-Spot Backscatter LDV with 10 ns Burst Correlator Processor,” Phys. Scripta 19, 365 (1979).
[CrossRef]

1971 (1)

N. N. Armencha, D. V. Tarkhin, “Mechanisms Governing the Frequency of Current Pulse Formation in Avalanche Silicon Photodiodes,” Sov. Phys. Semicond. 5, 235 (1971).

Andreoni, A.

S. Cova, A. Longoni, A. Andreoni, “Towards Picosecond Resolution With Single Photon Avalanche-Diodes,” Rev. Sci. Instrum. 52, 408 (1981).
[CrossRef]

Armencha, N. N.

N. N. Armencha, D. V. Tarkhin, “Mechanisms Governing the Frequency of Current Pulse Formation in Avalanche Silicon Photodiodes,” Sov. Phys. Semicond. 5, 235 (1971).

Bethea, C. G.

B. F. Levine, C. G. Bethea, “Detection of Single 1.3 μm Photons at 45 Mbit/s,” Electron. Lett. 20, 269 (1984).
[CrossRef]

Brown, R. G. W.

R. G. W. Brown, K. D. Ridley, J. G. Rarity, “Characterization of Silicon Avalanche Photodiodes for Photon Correlation Measurements, I. Passive Quenching,” Appl. Opt. 25, 4122 (1986).
[CrossRef] [PubMed]

R. G. W. Brown et al., “A Combined Fringe and Two-Spot Backscatter LDV with 10 ns Burst Correlator Processor,” Phys. Scripta 19, 365 (1979).
[CrossRef]

Coulter, R. L.

Cova, S.

S. Cova, A. Longoni, G. Ripamonti, “Active Quenching and Gating Circuits for Single-Photon Avalanche Photodiodes (SPAD’s),” IEEE Trans. Nucl. Sci. NS-29, 599 (1982).
[CrossRef]

S. Cova, A. Longoni, A. Andreoni, “Towards Picosecond Resolution With Single Photon Avalanche-Diodes,” Rev. Sci. Instrum. 52, 408 (1981).
[CrossRef]

Ingerson, T. E.

Kearney, R. J.

Levine, B. F.

B. F. Levine, C. G. Bethea, “Detection of Single 1.3 μm Photons at 45 Mbit/s,” Electron. Lett. 20, 269 (1984).
[CrossRef]

Longoni, A.

S. Cova, A. Longoni, G. Ripamonti, “Active Quenching and Gating Circuits for Single-Photon Avalanche Photodiodes (SPAD’s),” IEEE Trans. Nucl. Sci. NS-29, 599 (1982).
[CrossRef]

S. Cova, A. Longoni, A. Andreoni, “Towards Picosecond Resolution With Single Photon Avalanche-Diodes,” Rev. Sci. Instrum. 52, 408 (1981).
[CrossRef]

McWhirter, J. G.

J. G. McWhirter, “A Well-Conditioned Cubic B-Spline Model for Processing Laser Anemometry Data,” Opt. Acta 28, 1453 (1981).
[CrossRef]

Rarity, J. G.

R. G. W. Brown, K. D. Ridley, J. G. Rarity, “Characterization of Silicon Avalanche Photodiodes for Photon Correlation Measurements, I. Passive Quenching,” Appl. Opt. 25, 4122 (1986).
[CrossRef] [PubMed]

J. G. Rarity, K. D. Ridley, P. R. Tapster, “An Absolute Measurement of Detector Quantum Efficiency using Parametric Downconversion,” submitted to Applied Optics, 1987.
[CrossRef]

Ridley, K. D.

R. G. W. Brown, K. D. Ridley, J. G. Rarity, “Characterization of Silicon Avalanche Photodiodes for Photon Correlation Measurements, I. Passive Quenching,” Appl. Opt. 25, 4122 (1986).
[CrossRef] [PubMed]

J. G. Rarity, K. D. Ridley, P. R. Tapster, “An Absolute Measurement of Detector Quantum Efficiency using Parametric Downconversion,” submitted to Applied Optics, 1987.
[CrossRef]

Ripamonti, G.

S. Cova, A. Longoni, G. Ripamonti, “Active Quenching and Gating Circuits for Single-Photon Avalanche Photodiodes (SPAD’s),” IEEE Trans. Nucl. Sci. NS-29, 599 (1982).
[CrossRef]

Schatzel, K.

K. Schatzel, “Dead Time Correction of Photon Correlation Functions,” Technical Digest, Optical Society of America Spring 1986 Meeting on Quantum Limited Imaging and Image Processing, Honolulu, p. 96.

Tapster, P. R.

J. G. Rarity, K. D. Ridley, P. R. Tapster, “An Absolute Measurement of Detector Quantum Efficiency using Parametric Downconversion,” submitted to Applied Optics, 1987.
[CrossRef]

Tarkhin, D. V.

N. N. Armencha, D. V. Tarkhin, “Mechanisms Governing the Frequency of Current Pulse Formation in Avalanche Silicon Photodiodes,” Sov. Phys. Semicond. 5, 235 (1971).

Appl. Opt. (2)

Electron. Lett. (1)

B. F. Levine, C. G. Bethea, “Detection of Single 1.3 μm Photons at 45 Mbit/s,” Electron. Lett. 20, 269 (1984).
[CrossRef]

IEEE Trans. Nucl. Sci. (1)

S. Cova, A. Longoni, G. Ripamonti, “Active Quenching and Gating Circuits for Single-Photon Avalanche Photodiodes (SPAD’s),” IEEE Trans. Nucl. Sci. NS-29, 599 (1982).
[CrossRef]

Opt. Acta (1)

J. G. McWhirter, “A Well-Conditioned Cubic B-Spline Model for Processing Laser Anemometry Data,” Opt. Acta 28, 1453 (1981).
[CrossRef]

Phys. Scripta (1)

R. G. W. Brown et al., “A Combined Fringe and Two-Spot Backscatter LDV with 10 ns Burst Correlator Processor,” Phys. Scripta 19, 365 (1979).
[CrossRef]

Rev. Sci. Instrum. (1)

S. Cova, A. Longoni, A. Andreoni, “Towards Picosecond Resolution With Single Photon Avalanche-Diodes,” Rev. Sci. Instrum. 52, 408 (1981).
[CrossRef]

Sov. Phys. Semicond. (1)

N. N. Armencha, D. V. Tarkhin, “Mechanisms Governing the Frequency of Current Pulse Formation in Avalanche Silicon Photodiodes,” Sov. Phys. Semicond. 5, 235 (1971).

Other (5)

RCA data sheet, C30921S Silicon Avalanche Photodiodes, May1984.

H. Z. Cummins, E. R. Pike, Eds, Photon Correlation Spectroscopy and Velocimetry (Plenum, New York, 1977).

J. G. Rarity, K. D. Ridley, P. R. Tapster, “An Absolute Measurement of Detector Quantum Efficiency using Parametric Downconversion,” submitted to Applied Optics, 1987.
[CrossRef]

E. O. Schulz-DuBois, Ed., Photon Correlation Techniques in Fluid Mechanics (Springer, New York, 1983).

K. Schatzel, “Dead Time Correction of Photon Correlation Functions,” Technical Digest, Optical Society of America Spring 1986 Meeting on Quantum Limited Imaging and Image Processing, Honolulu, p. 96.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Electronic circuitry for APD active quenching.

Fig. 2
Fig. 2

Oscilloscope traces from the quenching circuitry: (a) Comparator input; (b) quenching pulse at the APD.

Fig. 3
Fig. 3

APD quantum efficiency as a function of excess voltage applied beyond breakdown.

Fig. 4
Fig. 4

Afterpulsing effects in a 10-ns sample time autocorrelation funciton: (a) APD temperature = 23°C; (b) APD temperature = −15°C.

Fig. 5
Fig. 5

Correlograms from an actively quenched APD: (a) 10-ns sample time, 175-KHz count rate; (b) 10-ns sample time, 460 KHz count rate; and (3) 50-ns sample time, 100-KHz count rate. Showing dead-time and afterpulsing effects.

Fig. 6
Fig. 6

Counting rate limitations of an APD compared to a PMT.

Fig. 7
Fig. 7

Counting rate distortions with a switched light source: (a) PMT traces; (b) APD traces; and (c) Thermal detector traces (low to high ~0.6°C).

Fig. 8
Fig. 8

Photon correlation spectroscopy results: (a) APD (lower) and PMT (upper) correlogram data at 0.3-μs sample time; (b) APD (lower) and PMT (upper) correlogram data at 2-μs sample time.

Fig. 9
Fig. 9

Photon correlation laser Doppler-difference velocimetry results: (a) Gaussian (upper) and spline (lower) fits to APD correlogram data; (b) Gaussian (upper) and spline (lower) fits to PMT correlogram data; (c) APD velocity pdf derived from the spline fit in (a); and (d) PMT velocity pdf derived from the spline fit in (b).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R L > V R - V B R I latch .

Metrics