Abstract

Echelon gratings have many beneficial properties when used as the dispersing mechanism of a fiber-optic wavelength multiplexer including high optical dispersion, high optical efficiency, greatly reduced sensitivity to polarization, simultaneous utility on many wavelength bands, and a capability for hierarchical multiplexing. The use of echelon multiplexers in a hierarchical environment is discussed, and a prototype echelon multiplexer is constructed and used to demonstrate the unique capabilities of this device for creating wavelength division multiplexing systems.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Ishio, J. Minowa, K. Noser, “Review and Status of Wavelength Division Multiplexing Technology and its Applications,” IEEE/OSA J. Lightwave-Technol. LT-2, 448 (1984).
    [CrossRef]
  2. G. Winzer, “Wavelength Multiplexing Components—a Review of Single Mode Devices and their Applications,” IEEE/OSA J. Lightwave Technol, LT-3, 369 (1984).
    [CrossRef]
  3. O. E. DeLang, “Wideband Optical Communication Systems: Part II—Frequency Division Multiplexing,” Proc. IEEE 58, 1683 (1970).
    [CrossRef]
  4. T. Suhara, J. Viljaneu, M. Leppihalme, “Integrated-Optic Wavelength Multi- and Demultiplexer Using a Chirped Grating and an Ion-Exchanged Waveguide,” Appl. Opt. 21, 2195 (1982).
    [CrossRef] [PubMed]
  5. J. Heggarty, S. D. Poulson, K. A. Jackson, I. P. Kaminow, “Low Loss Single Mode Wavelength Division Multiplexing with Etched Fiber Arrays,” Electron. Lett. 20, 686 (1984).
    [CrossRef]
  6. B. Hillerich, M. Rode, E. Weidel, “Wide Passband Grating Multiplexer for Multimode Fibers,” IEEE/OSA J. Lightwave Technol. LT-3, 590 (1985).
    [CrossRef]
  7. P. Phillipe, S. Valette, O. Mata Mendez, D. Maystre, “Wavelength Demultiplexer: Using Echelette Gratings on Silicon Substrate,” Appl. Opt. 24, 1006 (1985).
    [CrossRef]
  8. M. Born, E. Wolf, Principles of Optics (Macmillan, New York, 1964), pp. 408–411.
  9. R. W. Wood, Philos. Mag. 20, 770 (1910); Philos. Mag. 23, 310 (1912).
    [CrossRef]
  10. A. A. Michelson, Astrophys. J. 8, 37 (1898); Proc. Am. Acad. Arts Sci. 35, 109 (1899).
    [CrossRef]
  11. F. A. Jenkins, H. E. White, Principles of Optics (McGraw-Hill, New York, 1950), pp. 338–343.
  12. R. M. Finne, D. L. Klein “A Water-Amine-Complexing Agent System for Etching Silicon,” J. Electrochem. Soc. 114, 965 (1967).
    [CrossRef]
  13. M. J. Declercq, L. Gerzberg, J. D. Meindl, “Optimization of the Hydrazine-Water Solution for Anisotropic Etching of Silicon in Integrated Circuit Technology,” J. Electrochem. Soc. 112, 545 (1975).
    [CrossRef]
  14. D. L. Kendall “On Etching Very Narrow Grooves in Silicon,” Appl. Phys. Lett. 26, 195 (1975).
    [CrossRef]

1985 (2)

B. Hillerich, M. Rode, E. Weidel, “Wide Passband Grating Multiplexer for Multimode Fibers,” IEEE/OSA J. Lightwave Technol. LT-3, 590 (1985).
[CrossRef]

P. Phillipe, S. Valette, O. Mata Mendez, D. Maystre, “Wavelength Demultiplexer: Using Echelette Gratings on Silicon Substrate,” Appl. Opt. 24, 1006 (1985).
[CrossRef]

1984 (3)

H. Ishio, J. Minowa, K. Noser, “Review and Status of Wavelength Division Multiplexing Technology and its Applications,” IEEE/OSA J. Lightwave-Technol. LT-2, 448 (1984).
[CrossRef]

G. Winzer, “Wavelength Multiplexing Components—a Review of Single Mode Devices and their Applications,” IEEE/OSA J. Lightwave Technol, LT-3, 369 (1984).
[CrossRef]

J. Heggarty, S. D. Poulson, K. A. Jackson, I. P. Kaminow, “Low Loss Single Mode Wavelength Division Multiplexing with Etched Fiber Arrays,” Electron. Lett. 20, 686 (1984).
[CrossRef]

1982 (1)

1975 (2)

M. J. Declercq, L. Gerzberg, J. D. Meindl, “Optimization of the Hydrazine-Water Solution for Anisotropic Etching of Silicon in Integrated Circuit Technology,” J. Electrochem. Soc. 112, 545 (1975).
[CrossRef]

D. L. Kendall “On Etching Very Narrow Grooves in Silicon,” Appl. Phys. Lett. 26, 195 (1975).
[CrossRef]

1970 (1)

O. E. DeLang, “Wideband Optical Communication Systems: Part II—Frequency Division Multiplexing,” Proc. IEEE 58, 1683 (1970).
[CrossRef]

1967 (1)

R. M. Finne, D. L. Klein “A Water-Amine-Complexing Agent System for Etching Silicon,” J. Electrochem. Soc. 114, 965 (1967).
[CrossRef]

1910 (1)

R. W. Wood, Philos. Mag. 20, 770 (1910); Philos. Mag. 23, 310 (1912).
[CrossRef]

1898 (1)

A. A. Michelson, Astrophys. J. 8, 37 (1898); Proc. Am. Acad. Arts Sci. 35, 109 (1899).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Macmillan, New York, 1964), pp. 408–411.

Declercq, M. J.

M. J. Declercq, L. Gerzberg, J. D. Meindl, “Optimization of the Hydrazine-Water Solution for Anisotropic Etching of Silicon in Integrated Circuit Technology,” J. Electrochem. Soc. 112, 545 (1975).
[CrossRef]

DeLang, O. E.

O. E. DeLang, “Wideband Optical Communication Systems: Part II—Frequency Division Multiplexing,” Proc. IEEE 58, 1683 (1970).
[CrossRef]

Finne, R. M.

R. M. Finne, D. L. Klein “A Water-Amine-Complexing Agent System for Etching Silicon,” J. Electrochem. Soc. 114, 965 (1967).
[CrossRef]

Gerzberg, L.

M. J. Declercq, L. Gerzberg, J. D. Meindl, “Optimization of the Hydrazine-Water Solution for Anisotropic Etching of Silicon in Integrated Circuit Technology,” J. Electrochem. Soc. 112, 545 (1975).
[CrossRef]

Heggarty, J.

J. Heggarty, S. D. Poulson, K. A. Jackson, I. P. Kaminow, “Low Loss Single Mode Wavelength Division Multiplexing with Etched Fiber Arrays,” Electron. Lett. 20, 686 (1984).
[CrossRef]

Hillerich, B.

B. Hillerich, M. Rode, E. Weidel, “Wide Passband Grating Multiplexer for Multimode Fibers,” IEEE/OSA J. Lightwave Technol. LT-3, 590 (1985).
[CrossRef]

Ishio, H.

H. Ishio, J. Minowa, K. Noser, “Review and Status of Wavelength Division Multiplexing Technology and its Applications,” IEEE/OSA J. Lightwave-Technol. LT-2, 448 (1984).
[CrossRef]

Jackson, K. A.

J. Heggarty, S. D. Poulson, K. A. Jackson, I. P. Kaminow, “Low Loss Single Mode Wavelength Division Multiplexing with Etched Fiber Arrays,” Electron. Lett. 20, 686 (1984).
[CrossRef]

Jenkins, F. A.

F. A. Jenkins, H. E. White, Principles of Optics (McGraw-Hill, New York, 1950), pp. 338–343.

Kaminow, I. P.

J. Heggarty, S. D. Poulson, K. A. Jackson, I. P. Kaminow, “Low Loss Single Mode Wavelength Division Multiplexing with Etched Fiber Arrays,” Electron. Lett. 20, 686 (1984).
[CrossRef]

Kendall, D. L.

D. L. Kendall “On Etching Very Narrow Grooves in Silicon,” Appl. Phys. Lett. 26, 195 (1975).
[CrossRef]

Klein, D. L.

R. M. Finne, D. L. Klein “A Water-Amine-Complexing Agent System for Etching Silicon,” J. Electrochem. Soc. 114, 965 (1967).
[CrossRef]

Leppihalme, M.

Mata Mendez, O.

Maystre, D.

Meindl, J. D.

M. J. Declercq, L. Gerzberg, J. D. Meindl, “Optimization of the Hydrazine-Water Solution for Anisotropic Etching of Silicon in Integrated Circuit Technology,” J. Electrochem. Soc. 112, 545 (1975).
[CrossRef]

Michelson, A. A.

A. A. Michelson, Astrophys. J. 8, 37 (1898); Proc. Am. Acad. Arts Sci. 35, 109 (1899).
[CrossRef]

Minowa, J.

H. Ishio, J. Minowa, K. Noser, “Review and Status of Wavelength Division Multiplexing Technology and its Applications,” IEEE/OSA J. Lightwave-Technol. LT-2, 448 (1984).
[CrossRef]

Noser, K.

H. Ishio, J. Minowa, K. Noser, “Review and Status of Wavelength Division Multiplexing Technology and its Applications,” IEEE/OSA J. Lightwave-Technol. LT-2, 448 (1984).
[CrossRef]

Phillipe, P.

Poulson, S. D.

J. Heggarty, S. D. Poulson, K. A. Jackson, I. P. Kaminow, “Low Loss Single Mode Wavelength Division Multiplexing with Etched Fiber Arrays,” Electron. Lett. 20, 686 (1984).
[CrossRef]

Rode, M.

B. Hillerich, M. Rode, E. Weidel, “Wide Passband Grating Multiplexer for Multimode Fibers,” IEEE/OSA J. Lightwave Technol. LT-3, 590 (1985).
[CrossRef]

Suhara, T.

Valette, S.

Viljaneu, J.

Weidel, E.

B. Hillerich, M. Rode, E. Weidel, “Wide Passband Grating Multiplexer for Multimode Fibers,” IEEE/OSA J. Lightwave Technol. LT-3, 590 (1985).
[CrossRef]

White, H. E.

F. A. Jenkins, H. E. White, Principles of Optics (McGraw-Hill, New York, 1950), pp. 338–343.

Winzer, G.

G. Winzer, “Wavelength Multiplexing Components—a Review of Single Mode Devices and their Applications,” IEEE/OSA J. Lightwave Technol, LT-3, 369 (1984).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Macmillan, New York, 1964), pp. 408–411.

Wood, R. W.

R. W. Wood, Philos. Mag. 20, 770 (1910); Philos. Mag. 23, 310 (1912).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

D. L. Kendall “On Etching Very Narrow Grooves in Silicon,” Appl. Phys. Lett. 26, 195 (1975).
[CrossRef]

Astrophys. J. (1)

A. A. Michelson, Astrophys. J. 8, 37 (1898); Proc. Am. Acad. Arts Sci. 35, 109 (1899).
[CrossRef]

Electron. Lett. (1)

J. Heggarty, S. D. Poulson, K. A. Jackson, I. P. Kaminow, “Low Loss Single Mode Wavelength Division Multiplexing with Etched Fiber Arrays,” Electron. Lett. 20, 686 (1984).
[CrossRef]

IEEE/OSA J. Lightwave Technol (1)

G. Winzer, “Wavelength Multiplexing Components—a Review of Single Mode Devices and their Applications,” IEEE/OSA J. Lightwave Technol, LT-3, 369 (1984).
[CrossRef]

IEEE/OSA J. Lightwave Technol. (1)

B. Hillerich, M. Rode, E. Weidel, “Wide Passband Grating Multiplexer for Multimode Fibers,” IEEE/OSA J. Lightwave Technol. LT-3, 590 (1985).
[CrossRef]

IEEE/OSA J. Lightwave-Technol. (1)

H. Ishio, J. Minowa, K. Noser, “Review and Status of Wavelength Division Multiplexing Technology and its Applications,” IEEE/OSA J. Lightwave-Technol. LT-2, 448 (1984).
[CrossRef]

J. Electrochem. Soc. (2)

R. M. Finne, D. L. Klein “A Water-Amine-Complexing Agent System for Etching Silicon,” J. Electrochem. Soc. 114, 965 (1967).
[CrossRef]

M. J. Declercq, L. Gerzberg, J. D. Meindl, “Optimization of the Hydrazine-Water Solution for Anisotropic Etching of Silicon in Integrated Circuit Technology,” J. Electrochem. Soc. 112, 545 (1975).
[CrossRef]

Philos. Mag. (1)

R. W. Wood, Philos. Mag. 20, 770 (1910); Philos. Mag. 23, 310 (1912).
[CrossRef]

Proc. IEEE (1)

O. E. DeLang, “Wideband Optical Communication Systems: Part II—Frequency Division Multiplexing,” Proc. IEEE 58, 1683 (1970).
[CrossRef]

Other (2)

M. Born, E. Wolf, Principles of Optics (Macmillan, New York, 1964), pp. 408–411.

F. A. Jenkins, H. E. White, Principles of Optics (McGraw-Hill, New York, 1950), pp. 338–343.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Echelon geometry with step height H and step width W. The angle θ and the incremental path length D per step apply equally well for input and output beam geometries.

Fig. 2
Fig. 2

Light amplitude response of echelon grating as a function of the output beam angle when operated near the blaze angle. Both the envelope response S and the total response SI consisting of equally angularly spaced diffraction orders are shown. As the wavelength increases, equally spaced diffraction orders adhering to the envelope amplitude move in concert through the blaze range.

Fig. 3
Fig. 3

Graph in frequency domain illustrating two hierarchical multiplexing techniques produced by successive action of two stages of optical filtering: (a) available densly packed optical channels; (b) filter response for one of five available output fibers at first echelon multiplexer stage; (c) filter response for one of four available output fibers at second echelon multiplexer stage. In this case vernier filtering action results from the use of two multiplexers of slightly differing size. (d) Filter response for one of four available output fibers at the second echelon multiplexer stage. In this case bandpass filtering results by using for the second stage a filter having a much coarser wavelength selectivity. (e) Channels passed through selected fibers of both multiplexer stages.

Fig. 4
Fig. 4

Three types of Littrow mount, fiber-optic echelon grating wavelength multiplexer structures.

Fig. 5
Fig. 5

Exploded view of implemented multiplexer structure.

Fig. 6
Fig. 6

Echelon grating structure produced through photolithography and preferential etching of silicon.

Fig. 7
Fig. 7

Fiber array fanout structure showing the arrangement of single-mode signal and test input fibers and collinear array of multimode output fibers.

Tables (1)

Tables Icon

Table I Wavelengths of Light in Nanometers Exiting Each Fiber of the Echelon Multiplexer for Several Diffraction Orders of Interest

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

d θ / d λ = N 0 / [ W cos ( θ ) ] ,
ψ = sin θ 1 + sin θ 2 ,
I = 1 / W - W / 2 W / 2 exp ( 2 π i w ψ ) / λ ) d w = sin c ( π w ψ / λ ) .
D / R = cos α , E / R = sin α , sin ( θ + α ) = W / R , cos ( θ + α ) = H / R .
D sin θ + E cos θ = W ,             D cos θ - E sin θ = H .
D = W ( sin θ 1 + sin θ 2 ) + H ( cos θ 1 + cos θ 2 ) .
S = 1 / N - ( N - 1 ) / 2 ( N - 1 ) / 2 exp ( 1 ϕ n )
S = sin ( N π D / λ ) / N sin ( π D / λ ) .
I S = sin ( N π D / λ ) sinc ( π w ψ / λ ) / N sin ( π D / λ ) .
θ = θ 1 × θ 2 ,
S I = sin [ N π ( W θ + 2 H ) / λ ] × sinc ( π W θ / λ ) / N sin [ π ( W θ + 2 H ) / λ ] ,
S I = sin c [ N π ( W θ + 2 H ) / λ ] sinc [ π W θ / λ ) / sinc [ π ( W θ + 2 H ) / λ ] .
θ = 0.44 ( λ / N W ) .
- λ / 2 W < θ < λ / 2 W .
( W θ + 2 H ) / λ = - K ,
θ = ( 2 H - K λ ) / W .
d θ / ( d λ / λ ) = 2 H / W .

Metrics