Abstract

Intensity modulation induced by microbending in multimode fibers is considered as a transduction mechanism for detecting environmental changes such as pressure, temperature, acceleration, and magnetic and electric fields. A generic microbend sensor has been defined and studied, and its components, such as sensing fiber, light source, optical fiber leads, and detector, have been examined and optimized. Finally, the generic microbend sensor has been tested demonstrating good performance.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
    [CrossRef]
  2. J. A. Bucaro, N. Lagakos, J. H. Cole, T. G. Giallorenzi, Physical Acoustics, Vol. 16 (Academic, New York, 1982), p. 385.
  3. N. Lagakos, W. J. Trott, T. R. Hickman, J. H. Cole, J. A. Bucaro, “Microbend Fiber-Optic Sensor as Extended Hydrophone,” IEEE J. Quantum Electron. QE-18, 1633 (1982).
    [CrossRef]
  4. N. Lagakos, T. Litovitz, P. Macedo, R. Mohr, R. Meister, “Multimode Optical Fiber Displacement Sensor,” Appl. Opt. 20, 167 (1981).
    [CrossRef] [PubMed]
  5. J. N. Fields, C. P. Smith, C. K. Asawa, R. J. Morrison, O. G. Ramer, G. L. Tangonan, M. K. Barnoski, “Multimode Optical-Fiber Loss- Modulation Acoustic Sensor,” in Technical Digest, Conference on Optical Fiber Communication (Optical Society of America, Washington, DC, 1979), paper WD3; also J. N. Fields, C. K. Asawa, O. G. Ramer, M. K. Barnoski, “Fiber Optic Pressure Sensor,” J. Acoust. Soc. Am. 67, 816 (1980).
    [CrossRef]
  6. A. Yariv, Introduction to Optical Electronics (Holt Rinehart & Winston, New York, 1971), p. 254.
  7. D. Gloge, “Optical Power Flow in Multimode Fibers,” Bell Syst. Tech. J. 51, 1767 (1972).
  8. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974).
  9. D. B. Keck, Fundamentals of Optical Fiber Communications, M. Barnoski, Ed. (Academic, New York, 1976).
  10. J. E. Widwinter, Optical Fibers for Transmission (Wiley, New York, 1979).
  11. L. Jeunhomme, J. P. Pocholle, “Mode Coupling in a Multimode Optical Fiber with Microbends,” Appl. Opt. 14, 2400 (1975).
    [CrossRef] [PubMed]
  12. D. Gloge, E. A. J. Marcatili, “Multimode Theory of Graded-Core Fibers,” Bell Syst. Tech. J. 52, 1563 (1973).
  13. E. Merzbacker, Quantum Mechanics (Wiley, New York, 1961).
  14. C. N. Kurtz, W. Streifer, IEEE Trans. Microwave Theory Tech. MTT-17, 250 (1969).
    [CrossRef]
  15. F. L. Singer, Strength of Materials (Harper and Brothers, New York, 1962), p. 265.
  16. E. A. J. Marcatili, S. E. Miller, “Improved Relations Describing Directional Control in Electromagnetic Wave Guidance,” Bell Syst. Tech. J. 48, 2161 (1969).
  17. J. W. Goodman, “Fundamental Properties of Speckle,” J. Opt. Soc. Am. 66, 1145 (1976).
    [CrossRef]
  18. B. Crosignani, B. Daino, P. DiPorto, Opt. Commun. 11, 178 (1974).
    [CrossRef]
  19. A. R. Tynes, “Integrating Cube Scattering Detector,” Appl. Opt. 9, 2706 (1970).
    [CrossRef] [PubMed]
  20. B. S. Kawasaki, K. O. Hill, “Low-Loss Access Coupler for Multimode Optical Fiber Distribution Networks,” Appl. Opt. 16, 1794 (1977).
    [CrossRef] [PubMed]
  21. e.g., Wilcoxon Research, Bethesda, MD, Specification Sheet 1000.
  22. e.g., Schonstedt Instrument, Reston, VA, General Catalog (1985).

1982 (2)

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

N. Lagakos, W. J. Trott, T. R. Hickman, J. H. Cole, J. A. Bucaro, “Microbend Fiber-Optic Sensor as Extended Hydrophone,” IEEE J. Quantum Electron. QE-18, 1633 (1982).
[CrossRef]

1981 (1)

1977 (1)

1976 (1)

1975 (1)

1974 (1)

B. Crosignani, B. Daino, P. DiPorto, Opt. Commun. 11, 178 (1974).
[CrossRef]

1973 (1)

D. Gloge, E. A. J. Marcatili, “Multimode Theory of Graded-Core Fibers,” Bell Syst. Tech. J. 52, 1563 (1973).

1972 (1)

D. Gloge, “Optical Power Flow in Multimode Fibers,” Bell Syst. Tech. J. 51, 1767 (1972).

1970 (1)

1969 (2)

C. N. Kurtz, W. Streifer, IEEE Trans. Microwave Theory Tech. MTT-17, 250 (1969).
[CrossRef]

E. A. J. Marcatili, S. E. Miller, “Improved Relations Describing Directional Control in Electromagnetic Wave Guidance,” Bell Syst. Tech. J. 48, 2161 (1969).

Asawa, C. K.

J. N. Fields, C. P. Smith, C. K. Asawa, R. J. Morrison, O. G. Ramer, G. L. Tangonan, M. K. Barnoski, “Multimode Optical-Fiber Loss- Modulation Acoustic Sensor,” in Technical Digest, Conference on Optical Fiber Communication (Optical Society of America, Washington, DC, 1979), paper WD3; also J. N. Fields, C. K. Asawa, O. G. Ramer, M. K. Barnoski, “Fiber Optic Pressure Sensor,” J. Acoust. Soc. Am. 67, 816 (1980).
[CrossRef]

Barnoski, M. K.

J. N. Fields, C. P. Smith, C. K. Asawa, R. J. Morrison, O. G. Ramer, G. L. Tangonan, M. K. Barnoski, “Multimode Optical-Fiber Loss- Modulation Acoustic Sensor,” in Technical Digest, Conference on Optical Fiber Communication (Optical Society of America, Washington, DC, 1979), paper WD3; also J. N. Fields, C. K. Asawa, O. G. Ramer, M. K. Barnoski, “Fiber Optic Pressure Sensor,” J. Acoust. Soc. Am. 67, 816 (1980).
[CrossRef]

Bucaro, J. A.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

N. Lagakos, W. J. Trott, T. R. Hickman, J. H. Cole, J. A. Bucaro, “Microbend Fiber-Optic Sensor as Extended Hydrophone,” IEEE J. Quantum Electron. QE-18, 1633 (1982).
[CrossRef]

J. A. Bucaro, N. Lagakos, J. H. Cole, T. G. Giallorenzi, Physical Acoustics, Vol. 16 (Academic, New York, 1982), p. 385.

Cole, J. H.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

N. Lagakos, W. J. Trott, T. R. Hickman, J. H. Cole, J. A. Bucaro, “Microbend Fiber-Optic Sensor as Extended Hydrophone,” IEEE J. Quantum Electron. QE-18, 1633 (1982).
[CrossRef]

J. A. Bucaro, N. Lagakos, J. H. Cole, T. G. Giallorenzi, Physical Acoustics, Vol. 16 (Academic, New York, 1982), p. 385.

Crosignani, B.

B. Crosignani, B. Daino, P. DiPorto, Opt. Commun. 11, 178 (1974).
[CrossRef]

Daino, B.

B. Crosignani, B. Daino, P. DiPorto, Opt. Commun. 11, 178 (1974).
[CrossRef]

Dandridge, A.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

DiPorto, P.

B. Crosignani, B. Daino, P. DiPorto, Opt. Commun. 11, 178 (1974).
[CrossRef]

Fields, J. N.

J. N. Fields, C. P. Smith, C. K. Asawa, R. J. Morrison, O. G. Ramer, G. L. Tangonan, M. K. Barnoski, “Multimode Optical-Fiber Loss- Modulation Acoustic Sensor,” in Technical Digest, Conference on Optical Fiber Communication (Optical Society of America, Washington, DC, 1979), paper WD3; also J. N. Fields, C. K. Asawa, O. G. Ramer, M. K. Barnoski, “Fiber Optic Pressure Sensor,” J. Acoust. Soc. Am. 67, 816 (1980).
[CrossRef]

Giallorenzi, T. G.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

J. A. Bucaro, N. Lagakos, J. H. Cole, T. G. Giallorenzi, Physical Acoustics, Vol. 16 (Academic, New York, 1982), p. 385.

Gloge, D.

D. Gloge, E. A. J. Marcatili, “Multimode Theory of Graded-Core Fibers,” Bell Syst. Tech. J. 52, 1563 (1973).

D. Gloge, “Optical Power Flow in Multimode Fibers,” Bell Syst. Tech. J. 51, 1767 (1972).

Goodman, J. W.

Hickman, T. R.

N. Lagakos, W. J. Trott, T. R. Hickman, J. H. Cole, J. A. Bucaro, “Microbend Fiber-Optic Sensor as Extended Hydrophone,” IEEE J. Quantum Electron. QE-18, 1633 (1982).
[CrossRef]

Hill, K. O.

Jeunhomme, L.

Kawasaki, B. S.

Keck, D. B.

D. B. Keck, Fundamentals of Optical Fiber Communications, M. Barnoski, Ed. (Academic, New York, 1976).

Kurtz, C. N.

C. N. Kurtz, W. Streifer, IEEE Trans. Microwave Theory Tech. MTT-17, 250 (1969).
[CrossRef]

Lagakos, N.

N. Lagakos, W. J. Trott, T. R. Hickman, J. H. Cole, J. A. Bucaro, “Microbend Fiber-Optic Sensor as Extended Hydrophone,” IEEE J. Quantum Electron. QE-18, 1633 (1982).
[CrossRef]

N. Lagakos, T. Litovitz, P. Macedo, R. Mohr, R. Meister, “Multimode Optical Fiber Displacement Sensor,” Appl. Opt. 20, 167 (1981).
[CrossRef] [PubMed]

J. A. Bucaro, N. Lagakos, J. H. Cole, T. G. Giallorenzi, Physical Acoustics, Vol. 16 (Academic, New York, 1982), p. 385.

Litovitz, T.

Macedo, P.

Marcatili, E. A. J.

D. Gloge, E. A. J. Marcatili, “Multimode Theory of Graded-Core Fibers,” Bell Syst. Tech. J. 52, 1563 (1973).

E. A. J. Marcatili, S. E. Miller, “Improved Relations Describing Directional Control in Electromagnetic Wave Guidance,” Bell Syst. Tech. J. 48, 2161 (1969).

Marcuse, D.

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974).

Meister, R.

Merzbacker, E.

E. Merzbacker, Quantum Mechanics (Wiley, New York, 1961).

Miller, S. E.

E. A. J. Marcatili, S. E. Miller, “Improved Relations Describing Directional Control in Electromagnetic Wave Guidance,” Bell Syst. Tech. J. 48, 2161 (1969).

Mohr, R.

Morrison, R. J.

J. N. Fields, C. P. Smith, C. K. Asawa, R. J. Morrison, O. G. Ramer, G. L. Tangonan, M. K. Barnoski, “Multimode Optical-Fiber Loss- Modulation Acoustic Sensor,” in Technical Digest, Conference on Optical Fiber Communication (Optical Society of America, Washington, DC, 1979), paper WD3; also J. N. Fields, C. K. Asawa, O. G. Ramer, M. K. Barnoski, “Fiber Optic Pressure Sensor,” J. Acoust. Soc. Am. 67, 816 (1980).
[CrossRef]

Pocholle, J. P.

Priest, R. G.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

Ramer, O. G.

J. N. Fields, C. P. Smith, C. K. Asawa, R. J. Morrison, O. G. Ramer, G. L. Tangonan, M. K. Barnoski, “Multimode Optical-Fiber Loss- Modulation Acoustic Sensor,” in Technical Digest, Conference on Optical Fiber Communication (Optical Society of America, Washington, DC, 1979), paper WD3; also J. N. Fields, C. K. Asawa, O. G. Ramer, M. K. Barnoski, “Fiber Optic Pressure Sensor,” J. Acoust. Soc. Am. 67, 816 (1980).
[CrossRef]

Rashleigh, S. C.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

Sigel, G. H.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

Singer, F. L.

F. L. Singer, Strength of Materials (Harper and Brothers, New York, 1962), p. 265.

Smith, C. P.

J. N. Fields, C. P. Smith, C. K. Asawa, R. J. Morrison, O. G. Ramer, G. L. Tangonan, M. K. Barnoski, “Multimode Optical-Fiber Loss- Modulation Acoustic Sensor,” in Technical Digest, Conference on Optical Fiber Communication (Optical Society of America, Washington, DC, 1979), paper WD3; also J. N. Fields, C. K. Asawa, O. G. Ramer, M. K. Barnoski, “Fiber Optic Pressure Sensor,” J. Acoust. Soc. Am. 67, 816 (1980).
[CrossRef]

Streifer, W.

C. N. Kurtz, W. Streifer, IEEE Trans. Microwave Theory Tech. MTT-17, 250 (1969).
[CrossRef]

Tangonan, G. L.

J. N. Fields, C. P. Smith, C. K. Asawa, R. J. Morrison, O. G. Ramer, G. L. Tangonan, M. K. Barnoski, “Multimode Optical-Fiber Loss- Modulation Acoustic Sensor,” in Technical Digest, Conference on Optical Fiber Communication (Optical Society of America, Washington, DC, 1979), paper WD3; also J. N. Fields, C. K. Asawa, O. G. Ramer, M. K. Barnoski, “Fiber Optic Pressure Sensor,” J. Acoust. Soc. Am. 67, 816 (1980).
[CrossRef]

Trott, W. J.

N. Lagakos, W. J. Trott, T. R. Hickman, J. H. Cole, J. A. Bucaro, “Microbend Fiber-Optic Sensor as Extended Hydrophone,” IEEE J. Quantum Electron. QE-18, 1633 (1982).
[CrossRef]

Tynes, A. R.

Widwinter, J. E.

J. E. Widwinter, Optical Fibers for Transmission (Wiley, New York, 1979).

Yariv, A.

A. Yariv, Introduction to Optical Electronics (Holt Rinehart & Winston, New York, 1971), p. 254.

Appl. Opt. (4)

Bell Syst. Tech. J. (3)

D. Gloge, E. A. J. Marcatili, “Multimode Theory of Graded-Core Fibers,” Bell Syst. Tech. J. 52, 1563 (1973).

D. Gloge, “Optical Power Flow in Multimode Fibers,” Bell Syst. Tech. J. 51, 1767 (1972).

E. A. J. Marcatili, S. E. Miller, “Improved Relations Describing Directional Control in Electromagnetic Wave Guidance,” Bell Syst. Tech. J. 48, 2161 (1969).

IEEE J. Quantum Electron. (2)

N. Lagakos, W. J. Trott, T. R. Hickman, J. H. Cole, J. A. Bucaro, “Microbend Fiber-Optic Sensor as Extended Hydrophone,” IEEE J. Quantum Electron. QE-18, 1633 (1982).
[CrossRef]

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical Fiber Sensor Technology,” IEEE J. Quantum Electron. QE-18, 626 (1982).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

C. N. Kurtz, W. Streifer, IEEE Trans. Microwave Theory Tech. MTT-17, 250 (1969).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

B. Crosignani, B. Daino, P. DiPorto, Opt. Commun. 11, 178 (1974).
[CrossRef]

Other (10)

F. L. Singer, Strength of Materials (Harper and Brothers, New York, 1962), p. 265.

E. Merzbacker, Quantum Mechanics (Wiley, New York, 1961).

e.g., Wilcoxon Research, Bethesda, MD, Specification Sheet 1000.

e.g., Schonstedt Instrument, Reston, VA, General Catalog (1985).

J. A. Bucaro, N. Lagakos, J. H. Cole, T. G. Giallorenzi, Physical Acoustics, Vol. 16 (Academic, New York, 1982), p. 385.

J. N. Fields, C. P. Smith, C. K. Asawa, R. J. Morrison, O. G. Ramer, G. L. Tangonan, M. K. Barnoski, “Multimode Optical-Fiber Loss- Modulation Acoustic Sensor,” in Technical Digest, Conference on Optical Fiber Communication (Optical Society of America, Washington, DC, 1979), paper WD3; also J. N. Fields, C. K. Asawa, O. G. Ramer, M. K. Barnoski, “Fiber Optic Pressure Sensor,” J. Acoust. Soc. Am. 67, 816 (1980).
[CrossRef]

A. Yariv, Introduction to Optical Electronics (Holt Rinehart & Winston, New York, 1971), p. 254.

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974).

D. B. Keck, Fundamentals of Optical Fiber Communications, M. Barnoski, Ed. (Academic, New York, 1976).

J. E. Widwinter, Optical Fibers for Transmission (Wiley, New York, 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Microbend fiber-optic sensor. Inset: sensing fiber with deformer.

Fig. 2
Fig. 2

Experimentally obtained ΔTF vs periodicity (circles) for the Sumitomo graded-index fiber. Solid line: eye fit.

Fig. 3
Fig. 3

Microbending sensitivity ΔTX vs periodicity (circles) for the Sumitomo fiber. Solid line: eye fit.

Fig. 4
Fig. 4

Microbending induced loss ΔTloss vs applied force ΔF for two lengths of deformed Sumitomo fiber. Solid lines: best linear fits to data.

Fig. 5
Fig. 5

Macrobending induced loss ΔTloss vs bend diameter for the Sumitomo fiber and a Corning graded fiber. Solid lines: eye fits.

Fig. 6
Fig. 6

Sensor noise with (upper trace) the light source (laser diode: Optical Information Systems OLS000; light power, 720 μm) and without (lower trace) the light source.

Fig. 7
Fig. 7

Sensor noise with (upper trace) the light source (Fujitsu FED081SA LED; light power, 725 μm) and without (lower trace) the light source.

Fig. 8
Fig. 8

Generic microbend (displacement) fiber-optic sensor.

Fig. 9
Fig. 9

Spectrum obtained experimentally from the microbend displacement sensor. Signal at 1 kHz. Bandwidth, 10 Hz. Driving displacement: 10 Å.

Tables (4)

Tables Icon

Table I Microbending Sensitivity of Fibers

Tables Icon

Table II Length Dependence of ΔTX

Tables Icon

Table III Macrobending Sensitivity of Step Fibers

Tables Icon

Table IV Macrobending Sensitivity of Graded Fibers

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

Δ T = ( Δ T Δ X ) D Δ E ,
D Δ E = Δ X .
Δ T = ( Δ T Δ X ) Δ F ( K f + A s Y s l s ) - 1 ,
Δ F = Δ E C .
Δ T = Δ T Δ X · A p ( K f + A s Y s l s ) - 1 Δ P ,
Δ T Δ T Δ X · A p k f - 1 Δ P .
Δ T = Δ T Δ X · A s α s Y s ( k f + A s Y s l s ) - 1 Δ θ ,
Δ T Δ T Δ X · α s l s Δ θ .
Δ T = Δ T Δ X · m p ( k f + A s Y s l s ) - 1 · Δ a ,
Δ T = Δ T Δ X · m p k f - 1 · Δ a .
Δ T = Δ T Δ X A s Y s d 33 E , H ( k f + A s Y s l s ) - 1 Δ H F , E F .
Δ T Δ T Δ X d 33 H , E l s Δ H F , E F .
Δ T = Δ T Δ X A p k f - 1 Δ P             pressure ,
Δ T = Δ T Δ X α s l s Δ θ             temperature ,
Δ T = Δ T Δ X m p k f - 1 Δ a             acceleration ,
Δ T = Δ T Δ X d 33 H , E l s Δ H F , E F magnetic / electric field .
i s = q e W 0 h ν ( Δ T Δ X ) D Δ E ,
i N 2 = 2 e ( q e W 0 T / h ν ) Δ f ,
i s 2 / i N 2 = ( q W 0 h ν ) ( Δ T Δ X ) 2 D 2 ( Δ E ) 2 ( 2 T Δ f ) - 1 .
Δ E min = D - 1 ( Δ T Δ X ) - 1 2 T h ν Δ f q W 0 .
Δ X min = ( Δ T Δ X ) - 1 2 T h ν Δ f q W 0 .
k - k = ± 2 π Λ ,
n 2 ( r ) = n 2 ( 0 ) [ 1 - 2 Δ ( r / a ) α ] ,
k m + 1 - k m = α α + 2 2 Δ a ( m M ) [ ( α - 2 ) / ( α + 2 ) ] ,
k m + 1 - k m = 2 Δ 1 / 2 a m M .
Λ c = π a Δ 1 / 2 = 2 π a n 0 N . A . ,
K m + 1 - K m = ( 2 Δ ) 1 / 2 a .
Λ c = 2 π a Δ 1 / 2 = 2 π a n 0 N . A .
k f - 1 = Λ 3 3 π Y d 4 η ,
Δ T Δ X l q ; 0 < q 1.
Δ E min = D - 1 Δ X min ,
Δ P min = Δ X min A p k f - 1 .

Metrics