Abstract

We have investigated the potential for using single-mode fiber optics to link two or more telescopes in a large optical to near-IR astronomical interferometer. On an optical bench, we observed the effects of dispersion, temperature, and birefringence on wide-bandwidth interference fringes using up to 30 m of single-mode fiber in each arm of a Twyman-Green interferometer.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Connes, C. Froehly, “A Fiber-Linked Version of Project TRIO,” in Proceedings, ESA Conference, Colloquium on Kilometric Optical Arrays in Space, 23–25 Oct. 1984, Cargese, Corsica, France, pp. 49–61.
  2. See York Technology description of S-18 Chromatic Dispersion Test Set for information on the measuring process.
  3. H. F. Taylor, “Bending Effects in Optical Fibers,” IEEE/OSA J. Lightwave Technol. LT-2, 617 (1984).
    [Crossref]
  4. T. Musha, J. Kamimura, M. Nakazawa, “Optical Phase Fluctuations Thermally Induced in a Single-Mode Optical Fiber,” Appl. Opt. 21, 694 (1982).
    [Crossref] [PubMed]
  5. R. Ulrich, S. Rashleigh, W. Eickhoff, “Bending Induced Birefringence in Single-Mode Fibers,” Opt. Lett. 5, 273 (1980).
    [Crossref] [PubMed]
  6. D. Payne, A. Barlow, J. Ramskov Hansen, “Development of Low- and High-Birefringence Optical Fibers,” J. Quantum. Electron. 18, 477 (1982).
    [Crossref]
  7. W. Eickhoff, Y. Yen, R. Ulrich, “Wavelength Dependence of Birefringence in Single-Mode Fiber,” Appl. Opt. 20, 3428 (1981).
    [Crossref] [PubMed]
  8. R. Ulrich, “Fiber-Optic Rotation Sensing with Low Drift,” Opt. Lett. 5, 173 (1980).
    [Crossref] [PubMed]
  9. J. Noda, K. Okamoto, Y. Sasaki, “Polarization-Maintaining Fibers and their Applications,” IEEE/OSA J. Lightwave Technol. LT-4, 1071 (1986).
    [Crossref]
  10. K. Mochizuki, Y. Namihira, Y. Ejiri, “Birefringence Variation with Temperature in Elliptically Cladded Single-Mode Fibers,” Appl. Opt. 21, 4223 (1982).
    [Crossref] [PubMed]
  11. S. Shaklan, F. Roddier, “Coupling Light into Single-Mode Fiber Optics,” NOAO-ADP, R&D Note 86-3 (1986).

1986 (2)

J. Noda, K. Okamoto, Y. Sasaki, “Polarization-Maintaining Fibers and their Applications,” IEEE/OSA J. Lightwave Technol. LT-4, 1071 (1986).
[Crossref]

S. Shaklan, F. Roddier, “Coupling Light into Single-Mode Fiber Optics,” NOAO-ADP, R&D Note 86-3 (1986).

1984 (1)

H. F. Taylor, “Bending Effects in Optical Fibers,” IEEE/OSA J. Lightwave Technol. LT-2, 617 (1984).
[Crossref]

1982 (3)

1981 (1)

1980 (2)

Barlow, A.

D. Payne, A. Barlow, J. Ramskov Hansen, “Development of Low- and High-Birefringence Optical Fibers,” J. Quantum. Electron. 18, 477 (1982).
[Crossref]

Connes, P.

P. Connes, C. Froehly, “A Fiber-Linked Version of Project TRIO,” in Proceedings, ESA Conference, Colloquium on Kilometric Optical Arrays in Space, 23–25 Oct. 1984, Cargese, Corsica, France, pp. 49–61.

Eickhoff, W.

Ejiri, Y.

Froehly, C.

P. Connes, C. Froehly, “A Fiber-Linked Version of Project TRIO,” in Proceedings, ESA Conference, Colloquium on Kilometric Optical Arrays in Space, 23–25 Oct. 1984, Cargese, Corsica, France, pp. 49–61.

Kamimura, J.

Mochizuki, K.

Musha, T.

Nakazawa, M.

Namihira, Y.

Noda, J.

J. Noda, K. Okamoto, Y. Sasaki, “Polarization-Maintaining Fibers and their Applications,” IEEE/OSA J. Lightwave Technol. LT-4, 1071 (1986).
[Crossref]

Okamoto, K.

J. Noda, K. Okamoto, Y. Sasaki, “Polarization-Maintaining Fibers and their Applications,” IEEE/OSA J. Lightwave Technol. LT-4, 1071 (1986).
[Crossref]

Payne, D.

D. Payne, A. Barlow, J. Ramskov Hansen, “Development of Low- and High-Birefringence Optical Fibers,” J. Quantum. Electron. 18, 477 (1982).
[Crossref]

Ramskov Hansen, J.

D. Payne, A. Barlow, J. Ramskov Hansen, “Development of Low- and High-Birefringence Optical Fibers,” J. Quantum. Electron. 18, 477 (1982).
[Crossref]

Rashleigh, S.

Roddier, F.

S. Shaklan, F. Roddier, “Coupling Light into Single-Mode Fiber Optics,” NOAO-ADP, R&D Note 86-3 (1986).

Sasaki, Y.

J. Noda, K. Okamoto, Y. Sasaki, “Polarization-Maintaining Fibers and their Applications,” IEEE/OSA J. Lightwave Technol. LT-4, 1071 (1986).
[Crossref]

Shaklan, S.

S. Shaklan, F. Roddier, “Coupling Light into Single-Mode Fiber Optics,” NOAO-ADP, R&D Note 86-3 (1986).

Taylor, H. F.

H. F. Taylor, “Bending Effects in Optical Fibers,” IEEE/OSA J. Lightwave Technol. LT-2, 617 (1984).
[Crossref]

Ulrich, R.

Yen, Y.

Appl. Opt. (3)

IEEE/OSA J. Lightwave Technol. (2)

H. F. Taylor, “Bending Effects in Optical Fibers,” IEEE/OSA J. Lightwave Technol. LT-2, 617 (1984).
[Crossref]

J. Noda, K. Okamoto, Y. Sasaki, “Polarization-Maintaining Fibers and their Applications,” IEEE/OSA J. Lightwave Technol. LT-4, 1071 (1986).
[Crossref]

J. Quantum. Electron. (1)

D. Payne, A. Barlow, J. Ramskov Hansen, “Development of Low- and High-Birefringence Optical Fibers,” J. Quantum. Electron. 18, 477 (1982).
[Crossref]

NOAO-ADP, R&D Note 86-3 (1)

S. Shaklan, F. Roddier, “Coupling Light into Single-Mode Fiber Optics,” NOAO-ADP, R&D Note 86-3 (1986).

Opt. Lett. (2)

Other (2)

P. Connes, C. Froehly, “A Fiber-Linked Version of Project TRIO,” in Proceedings, ESA Conference, Colloquium on Kilometric Optical Arrays in Space, 23–25 Oct. 1984, Cargese, Corsica, France, pp. 49–61.

See York Technology description of S-18 Chromatic Dispersion Test Set for information on the measuring process.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup: (a) input and simple pinhole output; (b) path-scanning output used to produce Fig. 2.

Fig. 2
Fig. 2

Typical white light fringe photographed from oscilloscope. The central wavelength is ≃0.8 μm. The horizontal axis is the optical path difference. The vertical axis is the intensity of light on the PIN diode.

Fig. 3
Fig. 3

Waveguide dispersion. Top: fringe visibility for a given path length difference of the fibers. The letters correspond to the spectra plotted in the bottom figure.

Fig. 4
Fig. 4

F and S represent the fast and slow axes of the twisted HB fiber. As they twist, the plane of the bend in the reference frame of the fiber rotates. Thus, the fast and slow axes of the bend are smeared, resulting in zero net bend birefringence.

Fig. 5
Fig. 5

Upper left: the beam from one fiber. Spectral features from the Xe–Hg source are present. A Rochon prism located between the grating and detector (CCD TV) separated the two polarizations. Upper right: incoherent sum of the beams from each arm. Lower left: coherent sum of the beams. The interference fringes from the fast axis are out of phase with those from the slow axis because the fibers are not the same length. Lower right: one fiber has been cooled. The relative optical path of the fast and slow axis has changed by half of a fringe.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

V = 2 π λ a n core 2 - n clad 2 ,
δ β - 0.85 λ ( r R ) 2 l ,
Ω = 0.073 ξ l ,

Metrics