Abstract

The properties of thin gelatin films sensitized with a dye (methylene blue) when used as a holographic material are discussed. On illumination the excited dye molecule changes its structure giving a colorless molecule. The higher rate of bleaching and therefore the higher diffraction efficiency of the developed phase gratings are obtained in an oxygen-free atmosphere. Furthermore, the light absorption probability of the dye molecules depends on its position with respect to the electric vector of the light, with the result that the exposed part of the dye becomes dichroic when illuminated with linearly polarized light. This result allows the use of this material for polarizing holography.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G.O.’t. Hooft, “Methode der Sensililisierung von Chromgelatine fur Orange und Rot,” Z. Wiss. Photogr. Photophys. Photochem. 25, 394 (1928).
  2. G. K. Oster, G. Oster, “Photoreduction of Metal Ions by Visible Light,” J. Am. Chem. Soc. 81, 5543 (1959).
    [CrossRef]
  3. G. K. Oster, G. Oster, “Photochemical Modifications of High Polymers by Visible Light,” J. Polym. Sci. 48, 321 (1960).
    [CrossRef]
  4. G. K. Oster, G. Oster, “Visible Bichromate Process and Material,” U.S. Patent3,074,794 (1963).
  5. A. Graube, “Holograms Recorded with Red Light in Dye Sensitized Dichromated Gelatin,” Opt. Commun. 8, 251 (1973).
    [CrossRef]
  6. A. Graube, “Dye-Sensitized Dichromated Gelatin for Holographic Optical Element Fabrication,” Photogr. Sci. Eng. 22, 37 (1978).
  7. M. K. Kerutskite, L. M. Ryabova, B. A. Shashlov, V. I. Sherebertoo, “Influence of Trietanolamine and an Organic Dye in the Light Sensibility of Gelatin Layers with Ammonium Dichromate,” Zh. Nauchn. Prikl. Fotogr. Kinematogr. 8, 303 (1963).
  8. M. Akagi, “Spectral Sensitization of Dichromated Gelatin,” Photogr. Sci. Eng. 18, 248 (1974).
  9. T. Kubota, T. Ose, M. Sasaki, K. Honda, “Hologram Formation with Red Light in Methylene Blue Sensitized Dichromated Gelatin,” Appl. Opt. 15, 556 (1976).
    [CrossRef] [PubMed]
  10. S. Calixto, C. Solano, R. A. Lessard, “Real-Time Optical Image Processing and Polarization Holography with Dyed Gelatin,” Appl. Opt. 24, 2941 (1985).
    [CrossRef] [PubMed]
  11. C. Solano, “La Sensibilisation des Couches de Gelatine Utilisees pour le Traitement des Images et en Holographie Conventionnelle et Polarisee,” Ph.D. Thesis, U. Laval, Québec (1985).
  12. C. Solano, R. A. Lessard, “Phase Gratings Formed by Induced Anisotrophy in Dyed Gelatin Plates,” Appl. Opt. 24, 1776 (1985).
    [CrossRef] [PubMed]
  13. D. A. Marcroft, “The Production of Dichromated Gelatin Emulsions for Recording Phase Holograms,” M.Sc. Dissertation, Air Force Institute of Technology (1975).
  14. A. Bulona, R. Beels, F. H. Claes, “The Penetration of Aqueous Solutions in Dry Gelatin Layer,” Photogr. Sci. Eng. 24, 4 (1980).
  15. G. Oster, A. H. Aldeman, “Long Lived States in Photochemical Reactions I, Photoreduction of Eosin,” J. Am. Chem. Soc. 78, 913 (1956).
    [CrossRef]
  16. H. Obata, “Photoreduction of Methylene Blue by Visible Light in the Aqueous Solutions Containing Certain Kinds of Inorganic Salts II. Photobleached Product,” Bull. Chem. Soc. Jpn. 34, 1057 (1961).
    [CrossRef]
  17. G. Oster, “Dye Binding to High Polymers,” J. Polym. Sci. 16, 235 (1955).
    [CrossRef]
  18. W. J. Nickerson, J. R. Merkel, “Ribovlavin as a Photocatalyst and Hydrogen Carrier in Photochemical Reduction,” Biochim. Biophys. Acta 14, 303 (1954).
    [CrossRef] [PubMed]
  19. G. Oster, N. Wotherspoon, “Photoreduction of Methylene Blue by Ethylenediaminetetraacetic Acid,” J. Am. Chem. Soc. 79, 4836 (1957).
    [CrossRef]
  20. T. Todorov, L. Nikolova, N. Tomova, “High Sensitivity Material with Reversible Photo-Induced Anisotrophy,” Opt. Commun. 47, 123 (1983).
    [CrossRef]
  21. T. Todorov, L. Nikolova, N. Tomova, “Polarization Holography. 1: A New High-Efficiency Organic Material with Reversible Photoinduced Birefringence,” Appl. Opt. 23, 4309 (1984).
    [CrossRef] [PubMed]
  22. S. Calixto, R. A. Lessard, “Holographic Recording and Reconstruction of Polarized Light with Dyed Plastic,” Appl. Opt. 23, 4313 (1984).
    [CrossRef] [PubMed]
  23. B. S. Neporent, D. V. Stolbova, “Reversible Orientation Photodichroism in Viscous Solutions of Complex Organic Substances,” Opt. Spectrosc. 14, 331 (1963).
  24. S. I. Vavilov, V. L. Levishin, “Polarization Degree in Fluorescence,” Z. Phys. 16, 136 (1923).
  25. F. Perrin, “La Fluorescence des Solutions,” Ann. Phys. 12, 169 (1929).
  26. P. P. Feofilov, The Physical Bases of Polarized Emission (Consultants Bureau, New York, 1961).
  27. S. Nikitine, “Considerations Theoriques sur le Photodichroisme (Effet Weigert),” C. R. Acad. Sci. 204, 69 (1937).
  28. S. Nikitine, “Contributions a la Theorie du Photodichroisme,” C. R. Acad. Sci. 206, 1219 (1938).
  29. J. B. Birks, Photophysics of Aromatic Molecules (Wiley-Interscience, New York, 1970).
  30. Sh. D. Kakischavili, V. G. Shaverdova, “Weigert Effect in Dyes of the Triphenylmethane Group,” Opt. Spectrosc. USSR 41, 525 (1976).

1985 (2)

1984 (2)

1983 (1)

T. Todorov, L. Nikolova, N. Tomova, “High Sensitivity Material with Reversible Photo-Induced Anisotrophy,” Opt. Commun. 47, 123 (1983).
[CrossRef]

1980 (1)

A. Bulona, R. Beels, F. H. Claes, “The Penetration of Aqueous Solutions in Dry Gelatin Layer,” Photogr. Sci. Eng. 24, 4 (1980).

1978 (1)

A. Graube, “Dye-Sensitized Dichromated Gelatin for Holographic Optical Element Fabrication,” Photogr. Sci. Eng. 22, 37 (1978).

1976 (2)

T. Kubota, T. Ose, M. Sasaki, K. Honda, “Hologram Formation with Red Light in Methylene Blue Sensitized Dichromated Gelatin,” Appl. Opt. 15, 556 (1976).
[CrossRef] [PubMed]

Sh. D. Kakischavili, V. G. Shaverdova, “Weigert Effect in Dyes of the Triphenylmethane Group,” Opt. Spectrosc. USSR 41, 525 (1976).

1974 (1)

M. Akagi, “Spectral Sensitization of Dichromated Gelatin,” Photogr. Sci. Eng. 18, 248 (1974).

1973 (1)

A. Graube, “Holograms Recorded with Red Light in Dye Sensitized Dichromated Gelatin,” Opt. Commun. 8, 251 (1973).
[CrossRef]

1963 (2)

M. K. Kerutskite, L. M. Ryabova, B. A. Shashlov, V. I. Sherebertoo, “Influence of Trietanolamine and an Organic Dye in the Light Sensibility of Gelatin Layers with Ammonium Dichromate,” Zh. Nauchn. Prikl. Fotogr. Kinematogr. 8, 303 (1963).

B. S. Neporent, D. V. Stolbova, “Reversible Orientation Photodichroism in Viscous Solutions of Complex Organic Substances,” Opt. Spectrosc. 14, 331 (1963).

1961 (1)

H. Obata, “Photoreduction of Methylene Blue by Visible Light in the Aqueous Solutions Containing Certain Kinds of Inorganic Salts II. Photobleached Product,” Bull. Chem. Soc. Jpn. 34, 1057 (1961).
[CrossRef]

1960 (1)

G. K. Oster, G. Oster, “Photochemical Modifications of High Polymers by Visible Light,” J. Polym. Sci. 48, 321 (1960).
[CrossRef]

1959 (1)

G. K. Oster, G. Oster, “Photoreduction of Metal Ions by Visible Light,” J. Am. Chem. Soc. 81, 5543 (1959).
[CrossRef]

1957 (1)

G. Oster, N. Wotherspoon, “Photoreduction of Methylene Blue by Ethylenediaminetetraacetic Acid,” J. Am. Chem. Soc. 79, 4836 (1957).
[CrossRef]

1956 (1)

G. Oster, A. H. Aldeman, “Long Lived States in Photochemical Reactions I, Photoreduction of Eosin,” J. Am. Chem. Soc. 78, 913 (1956).
[CrossRef]

1955 (1)

G. Oster, “Dye Binding to High Polymers,” J. Polym. Sci. 16, 235 (1955).
[CrossRef]

1954 (1)

W. J. Nickerson, J. R. Merkel, “Ribovlavin as a Photocatalyst and Hydrogen Carrier in Photochemical Reduction,” Biochim. Biophys. Acta 14, 303 (1954).
[CrossRef] [PubMed]

1938 (1)

S. Nikitine, “Contributions a la Theorie du Photodichroisme,” C. R. Acad. Sci. 206, 1219 (1938).

1937 (1)

S. Nikitine, “Considerations Theoriques sur le Photodichroisme (Effet Weigert),” C. R. Acad. Sci. 204, 69 (1937).

1929 (1)

F. Perrin, “La Fluorescence des Solutions,” Ann. Phys. 12, 169 (1929).

1928 (1)

G.O.’t. Hooft, “Methode der Sensililisierung von Chromgelatine fur Orange und Rot,” Z. Wiss. Photogr. Photophys. Photochem. 25, 394 (1928).

1923 (1)

S. I. Vavilov, V. L. Levishin, “Polarization Degree in Fluorescence,” Z. Phys. 16, 136 (1923).

Akagi, M.

M. Akagi, “Spectral Sensitization of Dichromated Gelatin,” Photogr. Sci. Eng. 18, 248 (1974).

Aldeman, A. H.

G. Oster, A. H. Aldeman, “Long Lived States in Photochemical Reactions I, Photoreduction of Eosin,” J. Am. Chem. Soc. 78, 913 (1956).
[CrossRef]

Beels, R.

A. Bulona, R. Beels, F. H. Claes, “The Penetration of Aqueous Solutions in Dry Gelatin Layer,” Photogr. Sci. Eng. 24, 4 (1980).

Birks, J. B.

J. B. Birks, Photophysics of Aromatic Molecules (Wiley-Interscience, New York, 1970).

Bulona, A.

A. Bulona, R. Beels, F. H. Claes, “The Penetration of Aqueous Solutions in Dry Gelatin Layer,” Photogr. Sci. Eng. 24, 4 (1980).

Calixto, S.

Claes, F. H.

A. Bulona, R. Beels, F. H. Claes, “The Penetration of Aqueous Solutions in Dry Gelatin Layer,” Photogr. Sci. Eng. 24, 4 (1980).

Feofilov, P. P.

P. P. Feofilov, The Physical Bases of Polarized Emission (Consultants Bureau, New York, 1961).

Graube, A.

A. Graube, “Dye-Sensitized Dichromated Gelatin for Holographic Optical Element Fabrication,” Photogr. Sci. Eng. 22, 37 (1978).

A. Graube, “Holograms Recorded with Red Light in Dye Sensitized Dichromated Gelatin,” Opt. Commun. 8, 251 (1973).
[CrossRef]

Honda, K.

Hooft, G.O.’t.

G.O.’t. Hooft, “Methode der Sensililisierung von Chromgelatine fur Orange und Rot,” Z. Wiss. Photogr. Photophys. Photochem. 25, 394 (1928).

Kakischavili, Sh. D.

Sh. D. Kakischavili, V. G. Shaverdova, “Weigert Effect in Dyes of the Triphenylmethane Group,” Opt. Spectrosc. USSR 41, 525 (1976).

Kerutskite, M. K.

M. K. Kerutskite, L. M. Ryabova, B. A. Shashlov, V. I. Sherebertoo, “Influence of Trietanolamine and an Organic Dye in the Light Sensibility of Gelatin Layers with Ammonium Dichromate,” Zh. Nauchn. Prikl. Fotogr. Kinematogr. 8, 303 (1963).

Kubota, T.

Lessard, R. A.

Levishin, V. L.

S. I. Vavilov, V. L. Levishin, “Polarization Degree in Fluorescence,” Z. Phys. 16, 136 (1923).

Marcroft, D. A.

D. A. Marcroft, “The Production of Dichromated Gelatin Emulsions for Recording Phase Holograms,” M.Sc. Dissertation, Air Force Institute of Technology (1975).

Merkel, J. R.

W. J. Nickerson, J. R. Merkel, “Ribovlavin as a Photocatalyst and Hydrogen Carrier in Photochemical Reduction,” Biochim. Biophys. Acta 14, 303 (1954).
[CrossRef] [PubMed]

Neporent, B. S.

B. S. Neporent, D. V. Stolbova, “Reversible Orientation Photodichroism in Viscous Solutions of Complex Organic Substances,” Opt. Spectrosc. 14, 331 (1963).

Nickerson, W. J.

W. J. Nickerson, J. R. Merkel, “Ribovlavin as a Photocatalyst and Hydrogen Carrier in Photochemical Reduction,” Biochim. Biophys. Acta 14, 303 (1954).
[CrossRef] [PubMed]

Nikitine, S.

S. Nikitine, “Contributions a la Theorie du Photodichroisme,” C. R. Acad. Sci. 206, 1219 (1938).

S. Nikitine, “Considerations Theoriques sur le Photodichroisme (Effet Weigert),” C. R. Acad. Sci. 204, 69 (1937).

Nikolova, L.

T. Todorov, L. Nikolova, N. Tomova, “Polarization Holography. 1: A New High-Efficiency Organic Material with Reversible Photoinduced Birefringence,” Appl. Opt. 23, 4309 (1984).
[CrossRef] [PubMed]

T. Todorov, L. Nikolova, N. Tomova, “High Sensitivity Material with Reversible Photo-Induced Anisotrophy,” Opt. Commun. 47, 123 (1983).
[CrossRef]

Obata, H.

H. Obata, “Photoreduction of Methylene Blue by Visible Light in the Aqueous Solutions Containing Certain Kinds of Inorganic Salts II. Photobleached Product,” Bull. Chem. Soc. Jpn. 34, 1057 (1961).
[CrossRef]

Ose, T.

Oster, G.

G. K. Oster, G. Oster, “Photochemical Modifications of High Polymers by Visible Light,” J. Polym. Sci. 48, 321 (1960).
[CrossRef]

G. K. Oster, G. Oster, “Photoreduction of Metal Ions by Visible Light,” J. Am. Chem. Soc. 81, 5543 (1959).
[CrossRef]

G. Oster, N. Wotherspoon, “Photoreduction of Methylene Blue by Ethylenediaminetetraacetic Acid,” J. Am. Chem. Soc. 79, 4836 (1957).
[CrossRef]

G. Oster, A. H. Aldeman, “Long Lived States in Photochemical Reactions I, Photoreduction of Eosin,” J. Am. Chem. Soc. 78, 913 (1956).
[CrossRef]

G. Oster, “Dye Binding to High Polymers,” J. Polym. Sci. 16, 235 (1955).
[CrossRef]

G. K. Oster, G. Oster, “Visible Bichromate Process and Material,” U.S. Patent3,074,794 (1963).

Oster, G. K.

G. K. Oster, G. Oster, “Photochemical Modifications of High Polymers by Visible Light,” J. Polym. Sci. 48, 321 (1960).
[CrossRef]

G. K. Oster, G. Oster, “Photoreduction of Metal Ions by Visible Light,” J. Am. Chem. Soc. 81, 5543 (1959).
[CrossRef]

G. K. Oster, G. Oster, “Visible Bichromate Process and Material,” U.S. Patent3,074,794 (1963).

Perrin, F.

F. Perrin, “La Fluorescence des Solutions,” Ann. Phys. 12, 169 (1929).

Ryabova, L. M.

M. K. Kerutskite, L. M. Ryabova, B. A. Shashlov, V. I. Sherebertoo, “Influence of Trietanolamine and an Organic Dye in the Light Sensibility of Gelatin Layers with Ammonium Dichromate,” Zh. Nauchn. Prikl. Fotogr. Kinematogr. 8, 303 (1963).

Sasaki, M.

Shashlov, B. A.

M. K. Kerutskite, L. M. Ryabova, B. A. Shashlov, V. I. Sherebertoo, “Influence of Trietanolamine and an Organic Dye in the Light Sensibility of Gelatin Layers with Ammonium Dichromate,” Zh. Nauchn. Prikl. Fotogr. Kinematogr. 8, 303 (1963).

Shaverdova, V. G.

Sh. D. Kakischavili, V. G. Shaverdova, “Weigert Effect in Dyes of the Triphenylmethane Group,” Opt. Spectrosc. USSR 41, 525 (1976).

Sherebertoo, V. I.

M. K. Kerutskite, L. M. Ryabova, B. A. Shashlov, V. I. Sherebertoo, “Influence of Trietanolamine and an Organic Dye in the Light Sensibility of Gelatin Layers with Ammonium Dichromate,” Zh. Nauchn. Prikl. Fotogr. Kinematogr. 8, 303 (1963).

Solano, C.

Stolbova, D. V.

B. S. Neporent, D. V. Stolbova, “Reversible Orientation Photodichroism in Viscous Solutions of Complex Organic Substances,” Opt. Spectrosc. 14, 331 (1963).

Todorov, T.

T. Todorov, L. Nikolova, N. Tomova, “Polarization Holography. 1: A New High-Efficiency Organic Material with Reversible Photoinduced Birefringence,” Appl. Opt. 23, 4309 (1984).
[CrossRef] [PubMed]

T. Todorov, L. Nikolova, N. Tomova, “High Sensitivity Material with Reversible Photo-Induced Anisotrophy,” Opt. Commun. 47, 123 (1983).
[CrossRef]

Tomova, N.

T. Todorov, L. Nikolova, N. Tomova, “Polarization Holography. 1: A New High-Efficiency Organic Material with Reversible Photoinduced Birefringence,” Appl. Opt. 23, 4309 (1984).
[CrossRef] [PubMed]

T. Todorov, L. Nikolova, N. Tomova, “High Sensitivity Material with Reversible Photo-Induced Anisotrophy,” Opt. Commun. 47, 123 (1983).
[CrossRef]

Vavilov, S. I.

S. I. Vavilov, V. L. Levishin, “Polarization Degree in Fluorescence,” Z. Phys. 16, 136 (1923).

Wotherspoon, N.

G. Oster, N. Wotherspoon, “Photoreduction of Methylene Blue by Ethylenediaminetetraacetic Acid,” J. Am. Chem. Soc. 79, 4836 (1957).
[CrossRef]

Ann. Phys. (1)

F. Perrin, “La Fluorescence des Solutions,” Ann. Phys. 12, 169 (1929).

Appl. Opt. (5)

Biochim. Biophys. Acta (1)

W. J. Nickerson, J. R. Merkel, “Ribovlavin as a Photocatalyst and Hydrogen Carrier in Photochemical Reduction,” Biochim. Biophys. Acta 14, 303 (1954).
[CrossRef] [PubMed]

Bull. Chem. Soc. Jpn. (1)

H. Obata, “Photoreduction of Methylene Blue by Visible Light in the Aqueous Solutions Containing Certain Kinds of Inorganic Salts II. Photobleached Product,” Bull. Chem. Soc. Jpn. 34, 1057 (1961).
[CrossRef]

C. R. Acad. Sci. (2)

S. Nikitine, “Considerations Theoriques sur le Photodichroisme (Effet Weigert),” C. R. Acad. Sci. 204, 69 (1937).

S. Nikitine, “Contributions a la Theorie du Photodichroisme,” C. R. Acad. Sci. 206, 1219 (1938).

J. Am. Chem. Soc. (3)

G. Oster, N. Wotherspoon, “Photoreduction of Methylene Blue by Ethylenediaminetetraacetic Acid,” J. Am. Chem. Soc. 79, 4836 (1957).
[CrossRef]

G. Oster, A. H. Aldeman, “Long Lived States in Photochemical Reactions I, Photoreduction of Eosin,” J. Am. Chem. Soc. 78, 913 (1956).
[CrossRef]

G. K. Oster, G. Oster, “Photoreduction of Metal Ions by Visible Light,” J. Am. Chem. Soc. 81, 5543 (1959).
[CrossRef]

J. Polym. Sci. (2)

G. K. Oster, G. Oster, “Photochemical Modifications of High Polymers by Visible Light,” J. Polym. Sci. 48, 321 (1960).
[CrossRef]

G. Oster, “Dye Binding to High Polymers,” J. Polym. Sci. 16, 235 (1955).
[CrossRef]

Opt. Commun. (2)

T. Todorov, L. Nikolova, N. Tomova, “High Sensitivity Material with Reversible Photo-Induced Anisotrophy,” Opt. Commun. 47, 123 (1983).
[CrossRef]

A. Graube, “Holograms Recorded with Red Light in Dye Sensitized Dichromated Gelatin,” Opt. Commun. 8, 251 (1973).
[CrossRef]

Opt. Spectrosc. (1)

B. S. Neporent, D. V. Stolbova, “Reversible Orientation Photodichroism in Viscous Solutions of Complex Organic Substances,” Opt. Spectrosc. 14, 331 (1963).

Opt. Spectrosc. USSR (1)

Sh. D. Kakischavili, V. G. Shaverdova, “Weigert Effect in Dyes of the Triphenylmethane Group,” Opt. Spectrosc. USSR 41, 525 (1976).

Photogr. Sci. Eng. (3)

A. Graube, “Dye-Sensitized Dichromated Gelatin for Holographic Optical Element Fabrication,” Photogr. Sci. Eng. 22, 37 (1978).

M. Akagi, “Spectral Sensitization of Dichromated Gelatin,” Photogr. Sci. Eng. 18, 248 (1974).

A. Bulona, R. Beels, F. H. Claes, “The Penetration of Aqueous Solutions in Dry Gelatin Layer,” Photogr. Sci. Eng. 24, 4 (1980).

Z. Phys. (1)

S. I. Vavilov, V. L. Levishin, “Polarization Degree in Fluorescence,” Z. Phys. 16, 136 (1923).

Z. Wiss. Photogr. Photophys. Photochem. (1)

G.O.’t. Hooft, “Methode der Sensililisierung von Chromgelatine fur Orange und Rot,” Z. Wiss. Photogr. Photophys. Photochem. 25, 394 (1928).

Zh. Nauchn. Prikl. Fotogr. Kinematogr. (1)

M. K. Kerutskite, L. M. Ryabova, B. A. Shashlov, V. I. Sherebertoo, “Influence of Trietanolamine and an Organic Dye in the Light Sensibility of Gelatin Layers with Ammonium Dichromate,” Zh. Nauchn. Prikl. Fotogr. Kinematogr. 8, 303 (1963).

Other (5)

G. K. Oster, G. Oster, “Visible Bichromate Process and Material,” U.S. Patent3,074,794 (1963).

C. Solano, “La Sensibilisation des Couches de Gelatine Utilisees pour le Traitement des Images et en Holographie Conventionnelle et Polarisee,” Ph.D. Thesis, U. Laval, Québec (1985).

D. A. Marcroft, “The Production of Dichromated Gelatin Emulsions for Recording Phase Holograms,” M.Sc. Dissertation, Air Force Institute of Technology (1975).

J. B. Birks, Photophysics of Aromatic Molecules (Wiley-Interscience, New York, 1970).

P. P. Feofilov, The Physical Bases of Polarized Emission (Consultants Bureau, New York, 1961).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Absorption spectrum of the 10-μm thick MBG plate: 1, without exposure and 2, after exposure with He–Ne laser light.

Fig. 2
Fig. 2

Transmission as a function of the exposure energy for the MBG plates having different amounts of EDTA.

Fig. 3
Fig. 3

Transmission of the MBG plate as a function of the exposure energy in A, normal atmosphere and B, an oxygen-free atmosphere.

Fig. 4
Fig. 4

(a) Orientation of the recording beam, (b) the unexposed plate with dye molecules randomly orientated, (c) the probability of bleaching the molecules due to exposure depends on its position with respect to the electric vector of the incident light. If the exposure energy is big enough, we can suppose that after some time only the molecules aligned parallel to the X axis will remain unexcited.

Fig. 5
Fig. 5

(a) Absorbance of the irradiated plate as a function of wavelength (nm). The reading light was polarized perpendicular or parallel to the polarization direction of the recording light, compared with the spectrum of the non-exposed plate. (b) Induced dichroism (KK)l and absorption spectrum of the MBG plate.

Fig. 6
Fig. 6

Diffraction efficiency behavior (%) of gratings recorded with two beams parallel polarized, as a function of exposure time. The spatial frequency was 128 lines/mm; R is the beam intensity ratio.

Fig. 7
Fig. 7

Diffracted order polarization angle (degrees) vs angle (degrees) between the polarizations of the recording beams: solid line, plate sensitized with malachite green and dichromate (Ref. 10); dashed line, MBG plate.

Fig. 8
Fig. 8

Diffraction efficiency behavior (%) of gratings made with two beams perpendicularly polarized as a function of exposure time. The spatial frequency was 128 lines/mm; the beam ratio (R) is a parameter.

Fig. 9
Fig. 9

Diffraction efficiency behavior as a function of the absorbance of the MBG plate for 633 nm for a diffraction grating of 128 lines/mm.

Fig. 10
Fig. 10

Normalized diffraction efficiency as a function of the delay (t) between the exposure and the dichromate fixation.

Fig. 11
Fig. 11

(a) Diffraction efficiency of phase transmission gratings recorded in (A) a normal atmosphere and (B) an inert atmosphere; spatial frequency grating of 1500 lines/mm. (b) Diffraction efficiency of a phase reflection grating; spatial frequency of 4750 lines/mm.

Fig. 12
Fig. 12

Variation of the absorption spectrum of a MBG plate 1, after it has been dipped in the dichromate solution 2, and during the washing steps 3–7.

Fig. 13
Fig. 13

a, Percentage of the recovered dye from the MBG plate during the washing step as a function of the exposure energy. b, Percentage of the dye which has not been photoreduced in the MBG plate as a function of exposure energy.

Tables (3)

Tables Icon

Table I Experimental Results Obtained for a MBG Plate Used Some Days After Its Fabrication

Tables Icon

Table II Developing Technique for MG Plates

Tables Icon

Table III Balance of the amount of dye for the MBG plate

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

B = b I 0 cos 2 W ,
I = I 0 exp ( - K l ) ,
ɛ = [ log ( I 0 / I ) ] / l c ,
n t = 20 Σ A i 1000 ɛ l ,

Metrics