Abstract

A new type of heterodyne interferometer was made through direct modulation of a diode laser wavelength. A measurement accuracy of better than λ/50 and repeatability of λ/100 were obtained. This interferometer shows promise for use in testing wavefront aberrations, especially in optical disk systems.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Tatsuno, A. Arimoto, “Measurement and Analysis of Diode Laser Wave Fronts,” Appl. Opt, 20, 3520 (1981).
    [CrossRef] [PubMed]
  2. J. C. Wyant, “Use of an ac Heterodyne Lateral Shear Interferometer with Real-Time Wavefront Correction Systems,” Appl. Opt. 14, 2622 (1975).
    [CrossRef] [PubMed]
  3. J. H. Bruning et al., “Digital Wavefront Measuring Interferometer for Testing Optical Surfaces and Lenses,” Appl. Opt. 13, 2693 (1974).
    [CrossRef] [PubMed]
  4. S. Noda, K. Kojima, K. Kuroda, K. Kyuma, T. Nakayama, “Continuous-Wave Operation of Ridge Waveguide AlGaAs/GaAs Distributed-Feedback Lasers with Low Threshold Current,” in Technical Digest, Conference on Optical Fiber Communication (Optical Society of America, Washington, DC, 1986), paper TUJ4.
  5. M. Born, E. Wolf, Principles of Optics (Pergamon, New York1965), p. 469.
  6. K. Tatsuno, Y. Tsunoda, “Diode Laser Heterodyne Interferometer Using Direct Modulation of Wavelength,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1985), paper FD2.

1981 (1)

K. Tatsuno, A. Arimoto, “Measurement and Analysis of Diode Laser Wave Fronts,” Appl. Opt, 20, 3520 (1981).
[CrossRef] [PubMed]

1975 (1)

1974 (1)

Arimoto, A.

K. Tatsuno, A. Arimoto, “Measurement and Analysis of Diode Laser Wave Fronts,” Appl. Opt, 20, 3520 (1981).
[CrossRef] [PubMed]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York1965), p. 469.

Bruning, J. H.

Kojima, K.

S. Noda, K. Kojima, K. Kuroda, K. Kyuma, T. Nakayama, “Continuous-Wave Operation of Ridge Waveguide AlGaAs/GaAs Distributed-Feedback Lasers with Low Threshold Current,” in Technical Digest, Conference on Optical Fiber Communication (Optical Society of America, Washington, DC, 1986), paper TUJ4.

Kuroda, K.

S. Noda, K. Kojima, K. Kuroda, K. Kyuma, T. Nakayama, “Continuous-Wave Operation of Ridge Waveguide AlGaAs/GaAs Distributed-Feedback Lasers with Low Threshold Current,” in Technical Digest, Conference on Optical Fiber Communication (Optical Society of America, Washington, DC, 1986), paper TUJ4.

Kyuma, K.

S. Noda, K. Kojima, K. Kuroda, K. Kyuma, T. Nakayama, “Continuous-Wave Operation of Ridge Waveguide AlGaAs/GaAs Distributed-Feedback Lasers with Low Threshold Current,” in Technical Digest, Conference on Optical Fiber Communication (Optical Society of America, Washington, DC, 1986), paper TUJ4.

Nakayama, T.

S. Noda, K. Kojima, K. Kuroda, K. Kyuma, T. Nakayama, “Continuous-Wave Operation of Ridge Waveguide AlGaAs/GaAs Distributed-Feedback Lasers with Low Threshold Current,” in Technical Digest, Conference on Optical Fiber Communication (Optical Society of America, Washington, DC, 1986), paper TUJ4.

Noda, S.

S. Noda, K. Kojima, K. Kuroda, K. Kyuma, T. Nakayama, “Continuous-Wave Operation of Ridge Waveguide AlGaAs/GaAs Distributed-Feedback Lasers with Low Threshold Current,” in Technical Digest, Conference on Optical Fiber Communication (Optical Society of America, Washington, DC, 1986), paper TUJ4.

Tatsuno, K.

K. Tatsuno, A. Arimoto, “Measurement and Analysis of Diode Laser Wave Fronts,” Appl. Opt, 20, 3520 (1981).
[CrossRef] [PubMed]

K. Tatsuno, Y. Tsunoda, “Diode Laser Heterodyne Interferometer Using Direct Modulation of Wavelength,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1985), paper FD2.

Tsunoda, Y.

K. Tatsuno, Y. Tsunoda, “Diode Laser Heterodyne Interferometer Using Direct Modulation of Wavelength,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1985), paper FD2.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York1965), p. 469.

Wyant, J. C.

Appl. Opt (1)

K. Tatsuno, A. Arimoto, “Measurement and Analysis of Diode Laser Wave Fronts,” Appl. Opt, 20, 3520 (1981).
[CrossRef] [PubMed]

Appl. Opt. (2)

Other (3)

S. Noda, K. Kojima, K. Kuroda, K. Kyuma, T. Nakayama, “Continuous-Wave Operation of Ridge Waveguide AlGaAs/GaAs Distributed-Feedback Lasers with Low Threshold Current,” in Technical Digest, Conference on Optical Fiber Communication (Optical Society of America, Washington, DC, 1986), paper TUJ4.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York1965), p. 469.

K. Tatsuno, Y. Tsunoda, “Diode Laser Heterodyne Interferometer Using Direct Modulation of Wavelength,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1985), paper FD2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Relationship between injection current and wavelength of the diode laser. There are stable regions between mode hopping steps.

Fig. 2
Fig. 2

(B) Sinusoidal photocurrent was observed, while (a) injection current was modulated linearly with the aid of a Twyman-Green interferometer.

Fig. 3
Fig. 3

Relationship between optical path difference Δl and injection current shift Ai, necessary to attain one fringe shift. Upper line, single path interferometer; lower line, double path interferometer.

Fig. 4
Fig. 4

Diode laser direct modulation heterodyne interferometer measurement system.

Fig. 5
Fig. 5

Left, interference pattern modulated using one fringe shift injection current was input into a Zygo-Mark-III-PM-2 processor through the CCD (100 × 100); Center, contour map; right, 3-D display.

Fig. 6
Fig. 6

Modified Mach-Zehnder interferometer1 to measure wave-front aberration of an optical head. Two extra mirrors are used to obtain proper optical path difference.

Fig. 7
Fig. 7

Measurement results of an optical disk head wavefront aberrations as an example.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

Δ λ = β · Δ i = β · α · t ,
λ = 2 m n · L ,
Δ T = R · Δ i ,
Δ λ = 2 m ( L n T + n L T ) · Δ T .
Δ λ = λ n n T R · Δ i .
β = λ n n T R 6 × 10 - 3 ( nm / mA ) .
Φ ( x , y , t ) = 2 π · Δ l / λ .
ϕ ( x , y , t ) = 2 π Δ l / λ 0 - 2 π ( δ l / λ 0 2 ) δ λ ,
= Φ 0 - Δ Φ ,
Δ Φ = 2 π ( Δ l / λ 0 2 ) β · Δ i = 2 π · f · t .
f = 2 π ( Δ l / λ 0 2 ) α · β
I ( x , y , t ) = I 0 [ 1 + γ cos [ Φ ( x , y , t ) ] } ,
i p ( x , y , t ) = i 0 { 1 + γ cos [ Φ ( x , y , t ) ] } ,
Φ ( x , y , t ) = Φ 0 ( x , y ) - 2 π f t .
Δ i = ( λ 0 2 / β ) Δ l .
β 6 × 10 - 3 ( nm / mA ) ,
I s = ( I - 2 π 2 λ 2 E 2 ) 2 0.8 , E λ / 14 ,

Metrics