Abstract

A spatial filtering method is presented which can perform binary logic operations for 2-D data arrays. The logic states are characterized by the state of polarization. This approach performs logic without loss of light. Laboratory experiments are described, and experimental results are shown.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Tanida, Y. Ichioka, “Optical Logic Array Processor Using Shadowgrams,” J. Opt. Soc. Am. 73, 800 (1983).
    [CrossRef]
  2. J. Tanida, Y. Ichioka, “OPALS: Optical Parallel Array Logic System,” Appl. Opt. 20, 1565 (1986).
    [CrossRef]
  3. R. A. Athale, S. H. Lee, “Development of an Optical Parallel Logic Device and a Halfadder Circuit for Digital Optical Processing,” Opt. Eng. 18, 513 (1979).
    [CrossRef]
  4. M. T. Fatehi, K. C. Wasmundt, S. A. Collins, “Optical Logic Gates Using Liquid Crystal Light Valve: Implementation and Application Example,” Appl. Opt. 20, 2250 (1981).
    [CrossRef] [PubMed]
  5. A. A. Sawchuk, T. C. Strand, “Digital Optical Computing”, Proc. IEEE 72, 758 (1984).
    [CrossRef]
  6. H. O. Bartelt, A. W. Lohmann, E. E. Sicre, “Optical Logical Processing in Parallel with Theta Modulation,” J. Opt. Soc. Am. A 1, 944 (1984).
    [CrossRef]
  7. A. W. Lohmann, J. Weigelt, “Optical Logic Processing Based on Scattering,” Opt. Commun. 52, 255 (1984).
    [CrossRef]
  8. A. W. Lohmann, J. Weigelt, “Optical Logic by Anisotropic Scattering,” Opt. Commun. 54, 81 (1985).
    [CrossRef]
  9. A. W. Lohmann, J. Weigelt, “Digital Optical Adder Based on Spatial Filtering,” Appl. Opt., 25, 3047 (1986).
    [CrossRef] [PubMed]

1986 (2)

J. Tanida, Y. Ichioka, “OPALS: Optical Parallel Array Logic System,” Appl. Opt. 20, 1565 (1986).
[CrossRef]

A. W. Lohmann, J. Weigelt, “Digital Optical Adder Based on Spatial Filtering,” Appl. Opt., 25, 3047 (1986).
[CrossRef] [PubMed]

1985 (1)

A. W. Lohmann, J. Weigelt, “Optical Logic by Anisotropic Scattering,” Opt. Commun. 54, 81 (1985).
[CrossRef]

1984 (3)

H. O. Bartelt, A. W. Lohmann, E. E. Sicre, “Optical Logical Processing in Parallel with Theta Modulation,” J. Opt. Soc. Am. A 1, 944 (1984).
[CrossRef]

A. A. Sawchuk, T. C. Strand, “Digital Optical Computing”, Proc. IEEE 72, 758 (1984).
[CrossRef]

A. W. Lohmann, J. Weigelt, “Optical Logic Processing Based on Scattering,” Opt. Commun. 52, 255 (1984).
[CrossRef]

1983 (1)

1981 (1)

1979 (1)

R. A. Athale, S. H. Lee, “Development of an Optical Parallel Logic Device and a Halfadder Circuit for Digital Optical Processing,” Opt. Eng. 18, 513 (1979).
[CrossRef]

Athale, R. A.

R. A. Athale, S. H. Lee, “Development of an Optical Parallel Logic Device and a Halfadder Circuit for Digital Optical Processing,” Opt. Eng. 18, 513 (1979).
[CrossRef]

Bartelt, H. O.

Collins, S. A.

Fatehi, M. T.

Ichioka, Y.

J. Tanida, Y. Ichioka, “OPALS: Optical Parallel Array Logic System,” Appl. Opt. 20, 1565 (1986).
[CrossRef]

J. Tanida, Y. Ichioka, “Optical Logic Array Processor Using Shadowgrams,” J. Opt. Soc. Am. 73, 800 (1983).
[CrossRef]

Lee, S. H.

R. A. Athale, S. H. Lee, “Development of an Optical Parallel Logic Device and a Halfadder Circuit for Digital Optical Processing,” Opt. Eng. 18, 513 (1979).
[CrossRef]

Lohmann, A. W.

A. W. Lohmann, J. Weigelt, “Digital Optical Adder Based on Spatial Filtering,” Appl. Opt., 25, 3047 (1986).
[CrossRef] [PubMed]

A. W. Lohmann, J. Weigelt, “Optical Logic by Anisotropic Scattering,” Opt. Commun. 54, 81 (1985).
[CrossRef]

H. O. Bartelt, A. W. Lohmann, E. E. Sicre, “Optical Logical Processing in Parallel with Theta Modulation,” J. Opt. Soc. Am. A 1, 944 (1984).
[CrossRef]

A. W. Lohmann, J. Weigelt, “Optical Logic Processing Based on Scattering,” Opt. Commun. 52, 255 (1984).
[CrossRef]

Sawchuk, A. A.

A. A. Sawchuk, T. C. Strand, “Digital Optical Computing”, Proc. IEEE 72, 758 (1984).
[CrossRef]

Sicre, E. E.

Strand, T. C.

A. A. Sawchuk, T. C. Strand, “Digital Optical Computing”, Proc. IEEE 72, 758 (1984).
[CrossRef]

Tanida, J.

J. Tanida, Y. Ichioka, “OPALS: Optical Parallel Array Logic System,” Appl. Opt. 20, 1565 (1986).
[CrossRef]

J. Tanida, Y. Ichioka, “Optical Logic Array Processor Using Shadowgrams,” J. Opt. Soc. Am. 73, 800 (1983).
[CrossRef]

Wasmundt, K. C.

Weigelt, J.

A. W. Lohmann, J. Weigelt, “Digital Optical Adder Based on Spatial Filtering,” Appl. Opt., 25, 3047 (1986).
[CrossRef] [PubMed]

A. W. Lohmann, J. Weigelt, “Optical Logic by Anisotropic Scattering,” Opt. Commun. 54, 81 (1985).
[CrossRef]

A. W. Lohmann, J. Weigelt, “Optical Logic Processing Based on Scattering,” Opt. Commun. 52, 255 (1984).
[CrossRef]

Appl. Opt. (3)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Commun. (2)

A. W. Lohmann, J. Weigelt, “Optical Logic Processing Based on Scattering,” Opt. Commun. 52, 255 (1984).
[CrossRef]

A. W. Lohmann, J. Weigelt, “Optical Logic by Anisotropic Scattering,” Opt. Commun. 54, 81 (1985).
[CrossRef]

Opt. Eng. (1)

R. A. Athale, S. H. Lee, “Development of an Optical Parallel Logic Device and a Halfadder Circuit for Digital Optical Processing,” Opt. Eng. 18, 513 (1979).
[CrossRef]

Proc. IEEE (1)

A. A. Sawchuk, T. C. Strand, “Digital Optical Computing”, Proc. IEEE 72, 758 (1984).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Data encoding concept with a simple input array.

Fig. 2
Fig. 2

8-f spatial filtering setup for performing binary logic operations with data encoded by the state of polarization. The separation of the logical levels in the Fourier planes is achieved by Wollaston prisms.

Fig. 3
Fig. 3

Second Fourier plane without filter.

Fig. 4
Fig. 4

Truth tables for all sixteen binary logic operations and the corresponding filters in the second Fourier plane. The right column shows results of laboratory experiments, which were made visible by an analyzer (white = logical level 1, black = logical level 0).

Metrics