Abstract

Following the suggestion of Young and Kattawar, we used the S6 model to recalculate Rayleigh-Brillouin spectra of nitrogen and the required measurement time for a high spectral resolution lidar (HSRL) which we proposed for atmospheric parameter measurements. As expected, the calculated sensitivity for atmospheric temperature using this model and a simpler SM model previously used is nearly the same. In this paper, the procedures for selecting the optimum temperature for an atomic vapor filter as well as for error analysis and sensitivity estimation were carried out. It is verified that the precision of atmospheric temperature measurement with a HSRL system under construction is feasible for practical use.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. D. Hinkley, Ed., Laser Monitoring of the Atmosphere (Springer-Verlag, Berlin, (1976).
    [CrossRef]
  2. H. Shimizu, Y. Sasano, H. Nakane, N. Sugimoto, I. Matsui, N. Takeuchi, “Large Scale Laser Radar for Measuring Aerosol Distribution Over a Wide Area,” Appl. Opt. 24, 617 (1985).
    [CrossRef] [PubMed]
  3. R. M. Schotland, “Errors in the Lidar Measurement of Atmospheric Gases by Differential Absorption,” J. Appl. Meteorol. 13, 71(1974).
    [CrossRef]
  4. M. R. Bowman, A. J. Gibson, M. C. W. Sanford, “Atmospheric Sodium Measured by a Tuned Laser Radar,” Nature London 221, 456 (1969).
    [CrossRef]
  5. H. Inaba, T. Kobayashi, “Laser Raman Radar,” Opto-EIectronics 4, 101 (1972).
    [CrossRef]
  6. H. Shimizu, S. A. Lee, C. Y. She, “High Spectral Resolution Lidar System with Atomic Blocking Filters for Measuring Atmospheric Parameters,” Appl. Opt. 22, 1373 (1983).
    [CrossRef] [PubMed]
  7. S. Yip, M. Nelkin, “Application of a Kinetic Model to Time-Dependent Density Correlations in Fluids” Phys. Rev. A 135, 1241 (1964).
  8. A. T. Young, G. W. Kattawar, “Rayleigh-Scattering Line Profiles,” Appl. Opt. 22, 3668 (1983).
    [CrossRef] [PubMed]
  9. G. Tenti, C. D. Boley, R. C. Desai, “On the Kinetic Model Description of Rayleigh Brillouin Scattering from Molecular Gases,” Can. J. Phys. 52, 285 (1974).
  10. C. D. Boley, R. C. Desai, G. Tenti, “Kinetic Models and Brillouin Scattering in a Molecular Gas,” Can. J. Phys. 50, 2158 (1972).
    [CrossRef]
  11. G. Tenti, G. W. Kattawar, Texas A&M U.; private communication.
  12. W. H. Lowdermilk, N. Bloembergen, “Stimulated Concentration Scattering in the Binary-Gas-Mixtures Xe–He and SF6–He,” Phys. Rev. A5, 1423 (1972).
  13. R. L. Byer, “Remote Air Pollution Measurement,” Opt. Quantum Electron. 7, 147 (1975).
    [CrossRef]
  14. R. Pendorf, “Tables of the Refractive Index for Standard Air and the Rayleigh Scattering Coefficient for the Spectral Region Between 0.2 and 20.0μ and their Application to Atmospheric Optics,” J. Opt. Soc. Am. 47, 176 (1957).
    [CrossRef]
  15. U.S. Standard Atmosphere by NOAA, NASA, and U.S. Air Force, NOAA-S/T 76-1562 (1976).
  16. J. Cooney, “Measurement of Atmospheric Temperature Profiles by Raman Backscatter,” J. Appl. Meteorol. 11, 108 (1972).
    [CrossRef]
  17. R. G. Strauch, V. E. Derr, R. E. Cupp, “Atmospheric Temperature Measurement Using Raman Backscatter,” Appl. Opt. 10, 2665 (1971).
    [CrossRef] [PubMed]
  18. J. E. Kalshoven, C. L. Korb, G. K. Schwemmer, M. Dombrowski, “Laser Remote Sensing of Atmospheric Temperature by Observing Resonant Absorption of Oxygen,” Appl. Opt. 20, 1967 (1981).
    [CrossRef] [PubMed]

1985 (1)

1983 (2)

1981 (1)

1976 (1)

U.S. Standard Atmosphere by NOAA, NASA, and U.S. Air Force, NOAA-S/T 76-1562 (1976).

1975 (1)

R. L. Byer, “Remote Air Pollution Measurement,” Opt. Quantum Electron. 7, 147 (1975).
[CrossRef]

1974 (2)

G. Tenti, C. D. Boley, R. C. Desai, “On the Kinetic Model Description of Rayleigh Brillouin Scattering from Molecular Gases,” Can. J. Phys. 52, 285 (1974).

R. M. Schotland, “Errors in the Lidar Measurement of Atmospheric Gases by Differential Absorption,” J. Appl. Meteorol. 13, 71(1974).
[CrossRef]

1972 (4)

C. D. Boley, R. C. Desai, G. Tenti, “Kinetic Models and Brillouin Scattering in a Molecular Gas,” Can. J. Phys. 50, 2158 (1972).
[CrossRef]

W. H. Lowdermilk, N. Bloembergen, “Stimulated Concentration Scattering in the Binary-Gas-Mixtures Xe–He and SF6–He,” Phys. Rev. A5, 1423 (1972).

J. Cooney, “Measurement of Atmospheric Temperature Profiles by Raman Backscatter,” J. Appl. Meteorol. 11, 108 (1972).
[CrossRef]

H. Inaba, T. Kobayashi, “Laser Raman Radar,” Opto-EIectronics 4, 101 (1972).
[CrossRef]

1971 (1)

1969 (1)

M. R. Bowman, A. J. Gibson, M. C. W. Sanford, “Atmospheric Sodium Measured by a Tuned Laser Radar,” Nature London 221, 456 (1969).
[CrossRef]

1964 (1)

S. Yip, M. Nelkin, “Application of a Kinetic Model to Time-Dependent Density Correlations in Fluids” Phys. Rev. A 135, 1241 (1964).

1957 (1)

Bloembergen, N.

W. H. Lowdermilk, N. Bloembergen, “Stimulated Concentration Scattering in the Binary-Gas-Mixtures Xe–He and SF6–He,” Phys. Rev. A5, 1423 (1972).

Boley, C. D.

G. Tenti, C. D. Boley, R. C. Desai, “On the Kinetic Model Description of Rayleigh Brillouin Scattering from Molecular Gases,” Can. J. Phys. 52, 285 (1974).

C. D. Boley, R. C. Desai, G. Tenti, “Kinetic Models and Brillouin Scattering in a Molecular Gas,” Can. J. Phys. 50, 2158 (1972).
[CrossRef]

Bowman, M. R.

M. R. Bowman, A. J. Gibson, M. C. W. Sanford, “Atmospheric Sodium Measured by a Tuned Laser Radar,” Nature London 221, 456 (1969).
[CrossRef]

Byer, R. L.

R. L. Byer, “Remote Air Pollution Measurement,” Opt. Quantum Electron. 7, 147 (1975).
[CrossRef]

Cooney, J.

J. Cooney, “Measurement of Atmospheric Temperature Profiles by Raman Backscatter,” J. Appl. Meteorol. 11, 108 (1972).
[CrossRef]

Cupp, R. E.

Derr, V. E.

Desai, R. C.

G. Tenti, C. D. Boley, R. C. Desai, “On the Kinetic Model Description of Rayleigh Brillouin Scattering from Molecular Gases,” Can. J. Phys. 52, 285 (1974).

C. D. Boley, R. C. Desai, G. Tenti, “Kinetic Models and Brillouin Scattering in a Molecular Gas,” Can. J. Phys. 50, 2158 (1972).
[CrossRef]

Dombrowski, M.

Gibson, A. J.

M. R. Bowman, A. J. Gibson, M. C. W. Sanford, “Atmospheric Sodium Measured by a Tuned Laser Radar,” Nature London 221, 456 (1969).
[CrossRef]

Inaba, H.

H. Inaba, T. Kobayashi, “Laser Raman Radar,” Opto-EIectronics 4, 101 (1972).
[CrossRef]

Kalshoven, J. E.

Kattawar, G. W.

Kobayashi, T.

H. Inaba, T. Kobayashi, “Laser Raman Radar,” Opto-EIectronics 4, 101 (1972).
[CrossRef]

Korb, C. L.

Lee, S. A.

Lowdermilk, W. H.

W. H. Lowdermilk, N. Bloembergen, “Stimulated Concentration Scattering in the Binary-Gas-Mixtures Xe–He and SF6–He,” Phys. Rev. A5, 1423 (1972).

Matsui, I.

Nakane, H.

Nelkin, M.

S. Yip, M. Nelkin, “Application of a Kinetic Model to Time-Dependent Density Correlations in Fluids” Phys. Rev. A 135, 1241 (1964).

Pendorf, R.

Sanford, M. C. W.

M. R. Bowman, A. J. Gibson, M. C. W. Sanford, “Atmospheric Sodium Measured by a Tuned Laser Radar,” Nature London 221, 456 (1969).
[CrossRef]

Sasano, Y.

Schotland, R. M.

R. M. Schotland, “Errors in the Lidar Measurement of Atmospheric Gases by Differential Absorption,” J. Appl. Meteorol. 13, 71(1974).
[CrossRef]

Schwemmer, G. K.

She, C. Y.

Shimizu, H.

Strauch, R. G.

Sugimoto, N.

Takeuchi, N.

Tenti, G.

G. Tenti, C. D. Boley, R. C. Desai, “On the Kinetic Model Description of Rayleigh Brillouin Scattering from Molecular Gases,” Can. J. Phys. 52, 285 (1974).

C. D. Boley, R. C. Desai, G. Tenti, “Kinetic Models and Brillouin Scattering in a Molecular Gas,” Can. J. Phys. 50, 2158 (1972).
[CrossRef]

G. Tenti, G. W. Kattawar, Texas A&M U.; private communication.

Yip, S.

S. Yip, M. Nelkin, “Application of a Kinetic Model to Time-Dependent Density Correlations in Fluids” Phys. Rev. A 135, 1241 (1964).

Young, A. T.

Appl. Opt. (5)

Can. J. Phys. (2)

G. Tenti, C. D. Boley, R. C. Desai, “On the Kinetic Model Description of Rayleigh Brillouin Scattering from Molecular Gases,” Can. J. Phys. 52, 285 (1974).

C. D. Boley, R. C. Desai, G. Tenti, “Kinetic Models and Brillouin Scattering in a Molecular Gas,” Can. J. Phys. 50, 2158 (1972).
[CrossRef]

J. Appl. Meteorol. (2)

R. M. Schotland, “Errors in the Lidar Measurement of Atmospheric Gases by Differential Absorption,” J. Appl. Meteorol. 13, 71(1974).
[CrossRef]

J. Cooney, “Measurement of Atmospheric Temperature Profiles by Raman Backscatter,” J. Appl. Meteorol. 11, 108 (1972).
[CrossRef]

J. Opt. Soc. Am. (1)

Nature London (1)

M. R. Bowman, A. J. Gibson, M. C. W. Sanford, “Atmospheric Sodium Measured by a Tuned Laser Radar,” Nature London 221, 456 (1969).
[CrossRef]

NOAA-S/T 76-1562 (1)

U.S. Standard Atmosphere by NOAA, NASA, and U.S. Air Force, NOAA-S/T 76-1562 (1976).

Opt. Quantum Electron. (1)

R. L. Byer, “Remote Air Pollution Measurement,” Opt. Quantum Electron. 7, 147 (1975).
[CrossRef]

Opto-EIectronics (1)

H. Inaba, T. Kobayashi, “Laser Raman Radar,” Opto-EIectronics 4, 101 (1972).
[CrossRef]

Phys. Rev. (1)

W. H. Lowdermilk, N. Bloembergen, “Stimulated Concentration Scattering in the Binary-Gas-Mixtures Xe–He and SF6–He,” Phys. Rev. A5, 1423 (1972).

Phys. Rev. A (1)

S. Yip, M. Nelkin, “Application of a Kinetic Model to Time-Dependent Density Correlations in Fluids” Phys. Rev. A 135, 1241 (1964).

Other (2)

E. D. Hinkley, Ed., Laser Monitoring of the Atmosphere (Springer-Verlag, Berlin, (1976).
[CrossRef]

G. Tenti, G. W. Kattawar, Texas A&M U.; private communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Rayleigh-Brillouin spectra of N2 by the S6 model.

Fig. 2
Fig. 2

Temperature dependences of Rayleigh-Brillouin spectra of N2 by the S6 model.

Fig. 3
Fig. 3

Temperature dependences of Rayleigh-Brillouin spectra by the S6 and SM models.

Fig. 4
Fig. 4

Temperature dependence of the absorption spectra of an atomic vapor filter (Cs).

Fig. 5
Fig. 5

Schematic diagram of a HSRL.

Fig. 6
Fig. 6

Values of D with the SM and S6 models.

Fig. 7
Fig. 7

Spectral intensity ratio of the wing to the central part of the Rayleigh-Brillouin spectra.

Fig. 8
Fig. 8

Pressure dependence of Cl. The error bar shows temperature dependence of Cl; Cl = Cw/Cs.

Fig. 9
Fig. 9

Filter temperature dependence of Cl. The error bar shows the atmospheric temperature dependence of Cl.

Fig. 10
Fig. 10

Time required for atmospheric temperature measurement with the accuracy of ±1 K.

Tables (3)

Tables Icon

Table I Optimum Temperature for Atomic Filters and the Associated Values

Tables Icon

Table II Figure of Merit for HSRL Systems; the S6 Model is Used for Calculation

Tables Icon

Table III Specifications of a HSRL System

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

y = 0.2308 T a ( K ) + 110.4 T a 2 ( K ) P ( atm ) λ ( nm ) sin ( θ / 2 ) ,
Δ R ( ν ) = [ R R ( T a , ν ) R R ( T a + 1 , ν ) T a T a + 1 ] / R R ( T a , ν ) ,
R R ( T a , ν ) d ν = 1 .
D ( T a , T f ) = Δ R ( T a , ν ) R R ( T a , ν ) F ( ν , T f ) d ν ,
FM = E η D ( T a , T f ) / λ 4 ,
S w = R R F H d ν ,
S c = R R F L d ν S w ,
n c ( R ) = C b c S c ,
n w ( R ) = C b w S w ,
C = n 0 m L κ β T r 2 A r Y r η / R 2 ,
( S / N ) c = n c ( R ) t μ [ n w ( R ) + b c n b ] ,
( S / N ) w = n w ( R ) t μ [ n w ( R ) + b w n b ] ,
d C l / d T = 1 / ( S / N ) c 2 + 1 / ( S / N ) w 2 .
t = 1 C 2 ( d C l / d t ) 2 ( S c C + n b b c S c 2 + S w C + n b b w S w 2 ) .
b c S c S w C + n b = b w S w S c C + n b ,
t = 1 C 2 ( d C l / d t ) 2 ( S c S w C + n b + S w S c C + n b S w S c ) 2 .

Metrics