Abstract

The intrinsic stress properties of GeO2- and F-doped optical fiber preforms have been investigated in detail. The materials were prepared by low-pressure plasma-induced chemical vapor deposition (PCVD), and the dopant concentrations cover the range normally used in optical fiber manufacture (+1% > Δ > −1%). Homogeneously doped preform regions exhibit a constant stress level. This level is exclusively dependent on dopant concentrations. In GeO2-doped silica the stress increases linearly with the dopant concentration. For F-doped silica, however, this dependency is strongly nonlinear. A negative stress difference between undoped PCVD material and the substrate tube material can be explained by the reduced thermal expansion coefficient of PCVD-SiO2 caused by chlorine incorporated during the deposition step. The experiments agree excellently with theoretical predictions based on thermal expansion data.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Bachmann, P. Geittner, D. Leers, H. Wilson, “Loss Reduction in Fluorine Doped SM- and High N. A.-PCVD-Fibers,” in Technical Digest, International Conference on Integrated Optics and Optical Fiber Communication–Eleventh European Conference on Optical Communication, Vol. 1, Venice, (1985), p. 81.
  2. M. Born, E. Wolf, Principles of Optics (Macmillan, New York, 1964).
  3. R. H. Stolen, S. C. Rashleigh, “Polarization-Holding Fibers,” in Technical Digest, Third International Conference on Optical Fiber Sensors (Optical Society of America, Washington, DC, 1985), paper THCC1.
  4. N. Lagakos, R. Mohr, O. H. El-Bayoumi, “Stress Optic Coefficient and Stress Profile in Optical Fibers,” Appl. Opt. 20, 2309 (1981).
    [CrossRef] [PubMed]
  5. N. Shibata, K. Jinguji, M. Kawachi, T. Edahiro, “Nondestructive Structure Measurement of Optical Fiber Preforms with Photoelastic Effect,” J. Appl. Phy. 18, 1267 (1979).
    [CrossRef]
  6. G. W. Scherer, “Thermal Stress in a Cylinder: Application to Optical Waveguide Blanks,” J. Non-Cryst. Solids 34, 223 (1979).
    [CrossRef]
  7. P. L. Chu, T. Whitbread, “Measurement of Stresses in Optical Fiber and Preform,” Appl. Opt. 21, 4241 (1982).
    [CrossRef] [PubMed]
  8. G. W. Scherer, “Stress-Optical Effects in Optical Waveguides,” J. Non-Cryst. Solids 38/39, 201 (1980).
    [CrossRef]
  9. W. Primak, D. Post, “Photoelastic Constants of Vitreous Silica and its Elastic Coefficient of Refractive Index,” J. Appl. Phys. 30, 779 (1959).
    [CrossRef]
  10. R. B. Calligano, D. N. Payne, R. S. Anderssen, B. H. Ellen, “Determination of Stress Profiles in Optical Fiber Preforms,” Electron. Lett. 18, 475 (1982).
  11. P. Geittner, D. Küppers, H. Lydtin, “Low-Loss Optical Fibers Prepared by Plasma Activated CVD,” Appl. Phys. Lett. 28, 645 (1976).
    [CrossRef]
  12. H. Lydtin, “Update on PCVD,” in Technical Digest, Conference on Optical Fiber Communication (Optical Society of America, Washington, DC, (1984), paper TUM1.
  13. P. Geittner, “Preparation of Optical Fibers by Means of the PCVD Process,” J. Electro. Chem. Soc. Proc. 84-86, 479 (1984).
  14. P. Bachmann, “Review of Plasma Deposition Applications: Preparation of Optical Waveguides,” Pure Appl. Chem. 57, 1299 (1985).
    [CrossRef]
  15. P. Bachmann, T. P. M. Meeuwsen, to be published.
  16. D. Küppers, J. Koenings, “Preform Preparation by Deposition of Thousands of Layers with the Aid of Plasma Activated CVD,” in Technical Digest, Second European Conference on Optical Communication, Genoa (1976), p. 49
  17. W. Hermann, H. Rau, J. Ungelenk, “Solubility and Diffusion of Chlorine in Silica Glass,” Ber. Bunsenges. Phys. Chem. 89, 423 (1985).
    [CrossRef]
  18. M. Miyamoto, K. Sanada, T. Kobayashi, O. Fukuda, “Effects of Residual Halogen in Optical Fibers on Hydrogen Loss Increase Characteristics,” in Technical Digest, Conference on Optical Fiber Communication. (Optical Society of America, Washington, DC, (1985), paper TUK2.
  19. S. Takahashi, S. Shibata, “Thermal Variation of Attenuation in Optical Fibers,” J. Non-Cryst. Solids 30, 359 (1979).
    [CrossRef]
  20. Y. Y. Huang, A. Sarkar, P. C. Shultz, “Relationship Between Composition, Density and Refractive Index for Germania-Silica Glass,” J. Non-Cryst. Solids 27, 29 (1978).
    [CrossRef]

1985 (2)

P. Bachmann, “Review of Plasma Deposition Applications: Preparation of Optical Waveguides,” Pure Appl. Chem. 57, 1299 (1985).
[CrossRef]

W. Hermann, H. Rau, J. Ungelenk, “Solubility and Diffusion of Chlorine in Silica Glass,” Ber. Bunsenges. Phys. Chem. 89, 423 (1985).
[CrossRef]

1984 (1)

P. Geittner, “Preparation of Optical Fibers by Means of the PCVD Process,” J. Electro. Chem. Soc. Proc. 84-86, 479 (1984).

1982 (2)

P. L. Chu, T. Whitbread, “Measurement of Stresses in Optical Fiber and Preform,” Appl. Opt. 21, 4241 (1982).
[CrossRef] [PubMed]

R. B. Calligano, D. N. Payne, R. S. Anderssen, B. H. Ellen, “Determination of Stress Profiles in Optical Fiber Preforms,” Electron. Lett. 18, 475 (1982).

1981 (1)

1980 (1)

G. W. Scherer, “Stress-Optical Effects in Optical Waveguides,” J. Non-Cryst. Solids 38/39, 201 (1980).
[CrossRef]

1979 (3)

S. Takahashi, S. Shibata, “Thermal Variation of Attenuation in Optical Fibers,” J. Non-Cryst. Solids 30, 359 (1979).
[CrossRef]

N. Shibata, K. Jinguji, M. Kawachi, T. Edahiro, “Nondestructive Structure Measurement of Optical Fiber Preforms with Photoelastic Effect,” J. Appl. Phy. 18, 1267 (1979).
[CrossRef]

G. W. Scherer, “Thermal Stress in a Cylinder: Application to Optical Waveguide Blanks,” J. Non-Cryst. Solids 34, 223 (1979).
[CrossRef]

1978 (1)

Y. Y. Huang, A. Sarkar, P. C. Shultz, “Relationship Between Composition, Density and Refractive Index for Germania-Silica Glass,” J. Non-Cryst. Solids 27, 29 (1978).
[CrossRef]

1976 (1)

P. Geittner, D. Küppers, H. Lydtin, “Low-Loss Optical Fibers Prepared by Plasma Activated CVD,” Appl. Phys. Lett. 28, 645 (1976).
[CrossRef]

1959 (1)

W. Primak, D. Post, “Photoelastic Constants of Vitreous Silica and its Elastic Coefficient of Refractive Index,” J. Appl. Phys. 30, 779 (1959).
[CrossRef]

Anderssen, R. S.

R. B. Calligano, D. N. Payne, R. S. Anderssen, B. H. Ellen, “Determination of Stress Profiles in Optical Fiber Preforms,” Electron. Lett. 18, 475 (1982).

Bachmann, P.

P. Bachmann, “Review of Plasma Deposition Applications: Preparation of Optical Waveguides,” Pure Appl. Chem. 57, 1299 (1985).
[CrossRef]

P. Bachmann, P. Geittner, D. Leers, H. Wilson, “Loss Reduction in Fluorine Doped SM- and High N. A.-PCVD-Fibers,” in Technical Digest, International Conference on Integrated Optics and Optical Fiber Communication–Eleventh European Conference on Optical Communication, Vol. 1, Venice, (1985), p. 81.

P. Bachmann, T. P. M. Meeuwsen, to be published.

Born, M.

M. Born, E. Wolf, Principles of Optics (Macmillan, New York, 1964).

Calligano, R. B.

R. B. Calligano, D. N. Payne, R. S. Anderssen, B. H. Ellen, “Determination of Stress Profiles in Optical Fiber Preforms,” Electron. Lett. 18, 475 (1982).

Chu, P. L.

Edahiro, T.

N. Shibata, K. Jinguji, M. Kawachi, T. Edahiro, “Nondestructive Structure Measurement of Optical Fiber Preforms with Photoelastic Effect,” J. Appl. Phy. 18, 1267 (1979).
[CrossRef]

El-Bayoumi, O. H.

Ellen, B. H.

R. B. Calligano, D. N. Payne, R. S. Anderssen, B. H. Ellen, “Determination of Stress Profiles in Optical Fiber Preforms,” Electron. Lett. 18, 475 (1982).

Fukuda, O.

M. Miyamoto, K. Sanada, T. Kobayashi, O. Fukuda, “Effects of Residual Halogen in Optical Fibers on Hydrogen Loss Increase Characteristics,” in Technical Digest, Conference on Optical Fiber Communication. (Optical Society of America, Washington, DC, (1985), paper TUK2.

Geittner, P.

P. Geittner, “Preparation of Optical Fibers by Means of the PCVD Process,” J. Electro. Chem. Soc. Proc. 84-86, 479 (1984).

P. Geittner, D. Küppers, H. Lydtin, “Low-Loss Optical Fibers Prepared by Plasma Activated CVD,” Appl. Phys. Lett. 28, 645 (1976).
[CrossRef]

P. Bachmann, P. Geittner, D. Leers, H. Wilson, “Loss Reduction in Fluorine Doped SM- and High N. A.-PCVD-Fibers,” in Technical Digest, International Conference on Integrated Optics and Optical Fiber Communication–Eleventh European Conference on Optical Communication, Vol. 1, Venice, (1985), p. 81.

Hermann, W.

W. Hermann, H. Rau, J. Ungelenk, “Solubility and Diffusion of Chlorine in Silica Glass,” Ber. Bunsenges. Phys. Chem. 89, 423 (1985).
[CrossRef]

Huang, Y. Y.

Y. Y. Huang, A. Sarkar, P. C. Shultz, “Relationship Between Composition, Density and Refractive Index for Germania-Silica Glass,” J. Non-Cryst. Solids 27, 29 (1978).
[CrossRef]

Jinguji, K.

N. Shibata, K. Jinguji, M. Kawachi, T. Edahiro, “Nondestructive Structure Measurement of Optical Fiber Preforms with Photoelastic Effect,” J. Appl. Phy. 18, 1267 (1979).
[CrossRef]

Kawachi, M.

N. Shibata, K. Jinguji, M. Kawachi, T. Edahiro, “Nondestructive Structure Measurement of Optical Fiber Preforms with Photoelastic Effect,” J. Appl. Phy. 18, 1267 (1979).
[CrossRef]

Kobayashi, T.

M. Miyamoto, K. Sanada, T. Kobayashi, O. Fukuda, “Effects of Residual Halogen in Optical Fibers on Hydrogen Loss Increase Characteristics,” in Technical Digest, Conference on Optical Fiber Communication. (Optical Society of America, Washington, DC, (1985), paper TUK2.

Koenings, J.

D. Küppers, J. Koenings, “Preform Preparation by Deposition of Thousands of Layers with the Aid of Plasma Activated CVD,” in Technical Digest, Second European Conference on Optical Communication, Genoa (1976), p. 49

Küppers, D.

P. Geittner, D. Küppers, H. Lydtin, “Low-Loss Optical Fibers Prepared by Plasma Activated CVD,” Appl. Phys. Lett. 28, 645 (1976).
[CrossRef]

D. Küppers, J. Koenings, “Preform Preparation by Deposition of Thousands of Layers with the Aid of Plasma Activated CVD,” in Technical Digest, Second European Conference on Optical Communication, Genoa (1976), p. 49

Lagakos, N.

Leers, D.

P. Bachmann, P. Geittner, D. Leers, H. Wilson, “Loss Reduction in Fluorine Doped SM- and High N. A.-PCVD-Fibers,” in Technical Digest, International Conference on Integrated Optics and Optical Fiber Communication–Eleventh European Conference on Optical Communication, Vol. 1, Venice, (1985), p. 81.

Lydtin, H.

P. Geittner, D. Küppers, H. Lydtin, “Low-Loss Optical Fibers Prepared by Plasma Activated CVD,” Appl. Phys. Lett. 28, 645 (1976).
[CrossRef]

H. Lydtin, “Update on PCVD,” in Technical Digest, Conference on Optical Fiber Communication (Optical Society of America, Washington, DC, (1984), paper TUM1.

Meeuwsen, T. P. M.

P. Bachmann, T. P. M. Meeuwsen, to be published.

Miyamoto, M.

M. Miyamoto, K. Sanada, T. Kobayashi, O. Fukuda, “Effects of Residual Halogen in Optical Fibers on Hydrogen Loss Increase Characteristics,” in Technical Digest, Conference on Optical Fiber Communication. (Optical Society of America, Washington, DC, (1985), paper TUK2.

Mohr, R.

Payne, D. N.

R. B. Calligano, D. N. Payne, R. S. Anderssen, B. H. Ellen, “Determination of Stress Profiles in Optical Fiber Preforms,” Electron. Lett. 18, 475 (1982).

Post, D.

W. Primak, D. Post, “Photoelastic Constants of Vitreous Silica and its Elastic Coefficient of Refractive Index,” J. Appl. Phys. 30, 779 (1959).
[CrossRef]

Primak, W.

W. Primak, D. Post, “Photoelastic Constants of Vitreous Silica and its Elastic Coefficient of Refractive Index,” J. Appl. Phys. 30, 779 (1959).
[CrossRef]

Rashleigh, S. C.

R. H. Stolen, S. C. Rashleigh, “Polarization-Holding Fibers,” in Technical Digest, Third International Conference on Optical Fiber Sensors (Optical Society of America, Washington, DC, 1985), paper THCC1.

Rau, H.

W. Hermann, H. Rau, J. Ungelenk, “Solubility and Diffusion of Chlorine in Silica Glass,” Ber. Bunsenges. Phys. Chem. 89, 423 (1985).
[CrossRef]

Sanada, K.

M. Miyamoto, K. Sanada, T. Kobayashi, O. Fukuda, “Effects of Residual Halogen in Optical Fibers on Hydrogen Loss Increase Characteristics,” in Technical Digest, Conference on Optical Fiber Communication. (Optical Society of America, Washington, DC, (1985), paper TUK2.

Sarkar, A.

Y. Y. Huang, A. Sarkar, P. C. Shultz, “Relationship Between Composition, Density and Refractive Index for Germania-Silica Glass,” J. Non-Cryst. Solids 27, 29 (1978).
[CrossRef]

Scherer, G. W.

G. W. Scherer, “Stress-Optical Effects in Optical Waveguides,” J. Non-Cryst. Solids 38/39, 201 (1980).
[CrossRef]

G. W. Scherer, “Thermal Stress in a Cylinder: Application to Optical Waveguide Blanks,” J. Non-Cryst. Solids 34, 223 (1979).
[CrossRef]

Shibata, N.

N. Shibata, K. Jinguji, M. Kawachi, T. Edahiro, “Nondestructive Structure Measurement of Optical Fiber Preforms with Photoelastic Effect,” J. Appl. Phy. 18, 1267 (1979).
[CrossRef]

Shibata, S.

S. Takahashi, S. Shibata, “Thermal Variation of Attenuation in Optical Fibers,” J. Non-Cryst. Solids 30, 359 (1979).
[CrossRef]

Shultz, P. C.

Y. Y. Huang, A. Sarkar, P. C. Shultz, “Relationship Between Composition, Density and Refractive Index for Germania-Silica Glass,” J. Non-Cryst. Solids 27, 29 (1978).
[CrossRef]

Stolen, R. H.

R. H. Stolen, S. C. Rashleigh, “Polarization-Holding Fibers,” in Technical Digest, Third International Conference on Optical Fiber Sensors (Optical Society of America, Washington, DC, 1985), paper THCC1.

Takahashi, S.

S. Takahashi, S. Shibata, “Thermal Variation of Attenuation in Optical Fibers,” J. Non-Cryst. Solids 30, 359 (1979).
[CrossRef]

Ungelenk, J.

W. Hermann, H. Rau, J. Ungelenk, “Solubility and Diffusion of Chlorine in Silica Glass,” Ber. Bunsenges. Phys. Chem. 89, 423 (1985).
[CrossRef]

Whitbread, T.

Wilson, H.

P. Bachmann, P. Geittner, D. Leers, H. Wilson, “Loss Reduction in Fluorine Doped SM- and High N. A.-PCVD-Fibers,” in Technical Digest, International Conference on Integrated Optics and Optical Fiber Communication–Eleventh European Conference on Optical Communication, Vol. 1, Venice, (1985), p. 81.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Macmillan, New York, 1964).

Appl. Opt. (2)

Appl. Phys. Lett. (1)

P. Geittner, D. Küppers, H. Lydtin, “Low-Loss Optical Fibers Prepared by Plasma Activated CVD,” Appl. Phys. Lett. 28, 645 (1976).
[CrossRef]

Ber. Bunsenges. Phys. Chem. (1)

W. Hermann, H. Rau, J. Ungelenk, “Solubility and Diffusion of Chlorine in Silica Glass,” Ber. Bunsenges. Phys. Chem. 89, 423 (1985).
[CrossRef]

Electron. Lett. (1)

R. B. Calligano, D. N. Payne, R. S. Anderssen, B. H. Ellen, “Determination of Stress Profiles in Optical Fiber Preforms,” Electron. Lett. 18, 475 (1982).

J. Appl. Phy. (1)

N. Shibata, K. Jinguji, M. Kawachi, T. Edahiro, “Nondestructive Structure Measurement of Optical Fiber Preforms with Photoelastic Effect,” J. Appl. Phy. 18, 1267 (1979).
[CrossRef]

J. Appl. Phys. (1)

W. Primak, D. Post, “Photoelastic Constants of Vitreous Silica and its Elastic Coefficient of Refractive Index,” J. Appl. Phys. 30, 779 (1959).
[CrossRef]

J. Electro. Chem. Soc. Proc. (1)

P. Geittner, “Preparation of Optical Fibers by Means of the PCVD Process,” J. Electro. Chem. Soc. Proc. 84-86, 479 (1984).

J. Non-Cryst. Solids (4)

G. W. Scherer, “Stress-Optical Effects in Optical Waveguides,” J. Non-Cryst. Solids 38/39, 201 (1980).
[CrossRef]

G. W. Scherer, “Thermal Stress in a Cylinder: Application to Optical Waveguide Blanks,” J. Non-Cryst. Solids 34, 223 (1979).
[CrossRef]

S. Takahashi, S. Shibata, “Thermal Variation of Attenuation in Optical Fibers,” J. Non-Cryst. Solids 30, 359 (1979).
[CrossRef]

Y. Y. Huang, A. Sarkar, P. C. Shultz, “Relationship Between Composition, Density and Refractive Index for Germania-Silica Glass,” J. Non-Cryst. Solids 27, 29 (1978).
[CrossRef]

Pure Appl. Chem. (1)

P. Bachmann, “Review of Plasma Deposition Applications: Preparation of Optical Waveguides,” Pure Appl. Chem. 57, 1299 (1985).
[CrossRef]

Other (7)

P. Bachmann, T. P. M. Meeuwsen, to be published.

D. Küppers, J. Koenings, “Preform Preparation by Deposition of Thousands of Layers with the Aid of Plasma Activated CVD,” in Technical Digest, Second European Conference on Optical Communication, Genoa (1976), p. 49

H. Lydtin, “Update on PCVD,” in Technical Digest, Conference on Optical Fiber Communication (Optical Society of America, Washington, DC, (1984), paper TUM1.

P. Bachmann, P. Geittner, D. Leers, H. Wilson, “Loss Reduction in Fluorine Doped SM- and High N. A.-PCVD-Fibers,” in Technical Digest, International Conference on Integrated Optics and Optical Fiber Communication–Eleventh European Conference on Optical Communication, Vol. 1, Venice, (1985), p. 81.

M. Born, E. Wolf, Principles of Optics (Macmillan, New York, 1964).

R. H. Stolen, S. C. Rashleigh, “Polarization-Holding Fibers,” in Technical Digest, Third International Conference on Optical Fiber Sensors (Optical Society of America, Washington, DC, 1985), paper THCC1.

M. Miyamoto, K. Sanada, T. Kobayashi, O. Fukuda, “Effects of Residual Halogen in Optical Fibers on Hydrogen Loss Increase Characteristics,” in Technical Digest, Conference on Optical Fiber Communication. (Optical Society of America, Washington, DC, (1985), paper TUK2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup for determining stress profiles in preforms.

Fig. 2
Fig. 2

Principles of analysis of the photoelastic effect.

Fig. 3
Fig. 3

Experimental results: ring structured, GeO-doped preform (example): (a) measured retardation profile; (b) axial stress profile calculated from (a); (c) corresponding measured refractive-index profile. The regions between the index peaks consist of undoped SiO2.

Fig. 4
Fig. 4

Experimental results: quadruple cladding preform (example): (a) measured retardation profile; (b) axial stress profile calculated from (a); (c) corresponding measured refractive-index profile. The region r1 < r < r2 consists of undoped SiO2.

Fig. 5
Fig. 5

Axial stress differences Δσz between doped PCVD deposit and substrate tube silica vs the dopant-induced relative refractive-index difference.

Fig. 6
Fig. 6

Upper: radial chlorine concentration profile of an undoped PCVD preform. Lower: axial stress profile induced by chlorine incorporation in PCVD-SiO2.

Fig. 7
Fig. 7

Axial stress differences Δσz between PCVD-SiO2 and substrate tube silica vs chlorine concentration in the solid.

Fig. 8
Fig. 8

Schematic representation of the expected thermal expansion vs the temperature of undoped and F-doped PCVD-SiO2 for different fluorine levels (Δ1 > Δ2 > Δ3). T* is the setting point temperature; β denotes the stress difference.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

σ z = T room T * E ( T ) 1 r ( T ) [ α ( r , T ) c ( T ) ] d T ,
c ( T ) = 0 R α ( r , T ) r d r .
σ r ( r ) = 1 r 2 0 r σ z ( r ) r d r .
σ z ( r ) = σ r ( r ) + σ θ ( r ) ,
E = 7.7 × 10 5 kg / cm 2 and υ = 0.164 .
σ z i σ z j = α i α j ,
α i = T room T * E i ( T ) 1 ν i ( T ) α i ( T ) d T .
θ ( x ) = π λ R ( x ) .
σ r ( r ) = λ 2 π 2 r 2 r R x R ( x ) x 2 r 2 d x .
σ z ( r ) = 1 / r d / d r [ r 2 σ r ( r ) ] .
Δ σ z , max = 5 × 10 4 kg / m m 2 .
σ z , tot = σ z ( r ) r d r / | σ z ( r ) | r d r
Δ = ( n doped SiO 2 n SiO 2 ) / n SiO 2 .
Δ σ z ( Δ ) = 0.7 Δ 0.7 kg / mm 2 .

Metrics