Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Caulfield, W. T. Maloney, “Improved Discrimination in Optical Character Recognition,” Appl. Opt. 8, 2354 (1969).
    [CrossRef] [PubMed]
  2. H. J. Caulfield, M. H. Weinberg, “Computer Recognition of 2-D Patterns Using Generalized Matched Filters,” Appl. Opt. 21, 1699 (1982).
    [CrossRef] [PubMed]
  3. C. F. Hester, D. Casasent, “Multivariant Technique for Multiclass Pattern Recognition,” Appl. Opt. 19, 1758 (1980).
    [CrossRef] [PubMed]
  4. J. R. Leger, S. H. Lee, “Hybrid Optical Processor for Pattern Recognition and Classification Using a Generalized Set of Pattern Functions,” Appl. Opt. 21, 274 (1982).
    [CrossRef] [PubMed]
  5. J. Riggins, S. Butler, “Simulation of Synthetic Discriminant Function Optical Simulation,” Opt. Eng. 23, 721 (1984).
    [CrossRef]

1984

J. Riggins, S. Butler, “Simulation of Synthetic Discriminant Function Optical Simulation,” Opt. Eng. 23, 721 (1984).
[CrossRef]

1982

1980

1969

Butler, S.

J. Riggins, S. Butler, “Simulation of Synthetic Discriminant Function Optical Simulation,” Opt. Eng. 23, 721 (1984).
[CrossRef]

Casasent, D.

Caulfield, H. J.

Hester, C. F.

Lee, S. H.

Leger, J. R.

Maloney, W. T.

Riggins, J.

J. Riggins, S. Butler, “Simulation of Synthetic Discriminant Function Optical Simulation,” Opt. Eng. 23, 721 (1984).
[CrossRef]

Weinberg, M. H.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (8)

Equations on this page are rendered with MathJax. Learn more.

| h , f i | 2 = λ i 2 ( 1 i n ) .
h , f i = z i λ i ( 1 i n )
h 0 = a 1 f 1 + + a n f n
( f i , f j ) ( a j ) = ( z i λ i ) .
SNR ( h ) = min 1 i m SNR i ,
SNR i = max x B i | h x , f i | 2 / max x B i | h x , f i | 2
SNR i = min 1 j n λ j 2 / max x | h x , f i | 2
min z i h max 1 k m max x B k | h x , f k | 2 .

Metrics