Abstract

This paper describes a new optical logic gate for optical digital processing and computing in parallel. The gate is developed from the logic gate that uses two spatial light modulators based on the Pockels effect (PROM device) and consists of a linear polarizer, analyzers, and three PROM devices. The gate can perform the sum and the carry operations in a full-adder circuit for binary variables and various logic functions of two or three binary variables. The gate has wide potential use and the capability of operating on large arrays of binary variables.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. A. Horwitz, F. J. Corbett, “The PROM—Theory and Applications for the Pockels Readout Optical Modulator,” Opt. Eng. 17, 353 (1978).
  2. R. A. Athale, S. H. Lee, “Development of an Optical Parallel Logic Device and a Half-Adder Circuit for Digital Optical Processing,” Opt. Eng. 18, 513 (1979).
    [CrossRef]
  3. R. A. Athale, H. S. Barr, S. H. Lee, B. J. Bartholomew, “Digital Optical Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 241, 149 (1980).
  4. M. T. Fatehi, K. C. Wasmundt, S. A. Collins, “Optical Logic Gates Using Liquid Crystal Light Valve: Implementation and Application Example,” Appl. Opt. 20, 2250 (1981).
    [CrossRef] [PubMed]
  5. T. Minemoto, K. Okamoto, K. Miyamoto, “Optical Parallel Logic Gate Using Spatial Light Modulators with the Pockels Effect,” Appl. Opt. 24, 2055 (1985).
    [CrossRef] [PubMed]
  6. U. K. Sengupta, U. H. Gerlach, S. A. Collins, “Bistable Optical Spatial Device Using Direct Optical Feedback,” Opt. Lett. 3, 199 (1978).
    [CrossRef] [PubMed]
  7. U. H. Gerlach, U. K. Sengupta, S. A. Collins, “Single Spatial Light Modulator Bistable Optical Matrix Device Using Optical Feedback,” Opt. Eng. 19, 452 (1980).
    [CrossRef]
  8. R. A. Athale, S. H. Lee, “Bistability and Thresholding by a New Photoconductor-Twisted Nematic Liquid Crystal Device with Optical Feedback,” Appl. Opt. 20, 1424 (1981).
    [CrossRef] [PubMed]
  9. G. Ferrano, G. Hausler, “TV Optical Feedback Systems,” Opt. Eng. 19, 442 (1980).
    [CrossRef]
  10. M. T. Fatehi, K. C. Wasmundt, S. A. Collins, “Optical Flip-Flops and Sequential Logic Circuits Using a Liquid Crystal Light Valve,” Appl. Opt. 23, 2163 (1984).
    [CrossRef] [PubMed]
  11. S. G. Lipson, P. Nisenson, “Imaging Characteristics of the Itek PROM,” Appl. Opt. 13, 2052 (1974).
    [CrossRef] [PubMed]
  12. T. Minemoto, H. Yoshimura, Y. Suemoto, S. Fujita, “Incoherent-to-Coherent Optical Image Converter of Transmission Type Using Bi12SiO20 Single Crystals,” Jpn. J. Appl. Phys. 18, 1727 (1979).
    [CrossRef]

1985 (1)

1984 (1)

1981 (2)

1980 (3)

R. A. Athale, H. S. Barr, S. H. Lee, B. J. Bartholomew, “Digital Optical Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 241, 149 (1980).

U. H. Gerlach, U. K. Sengupta, S. A. Collins, “Single Spatial Light Modulator Bistable Optical Matrix Device Using Optical Feedback,” Opt. Eng. 19, 452 (1980).
[CrossRef]

G. Ferrano, G. Hausler, “TV Optical Feedback Systems,” Opt. Eng. 19, 442 (1980).
[CrossRef]

1979 (2)

T. Minemoto, H. Yoshimura, Y. Suemoto, S. Fujita, “Incoherent-to-Coherent Optical Image Converter of Transmission Type Using Bi12SiO20 Single Crystals,” Jpn. J. Appl. Phys. 18, 1727 (1979).
[CrossRef]

R. A. Athale, S. H. Lee, “Development of an Optical Parallel Logic Device and a Half-Adder Circuit for Digital Optical Processing,” Opt. Eng. 18, 513 (1979).
[CrossRef]

1978 (2)

B. A. Horwitz, F. J. Corbett, “The PROM—Theory and Applications for the Pockels Readout Optical Modulator,” Opt. Eng. 17, 353 (1978).

U. K. Sengupta, U. H. Gerlach, S. A. Collins, “Bistable Optical Spatial Device Using Direct Optical Feedback,” Opt. Lett. 3, 199 (1978).
[CrossRef] [PubMed]

1974 (1)

Athale, R. A.

R. A. Athale, S. H. Lee, “Bistability and Thresholding by a New Photoconductor-Twisted Nematic Liquid Crystal Device with Optical Feedback,” Appl. Opt. 20, 1424 (1981).
[CrossRef] [PubMed]

R. A. Athale, H. S. Barr, S. H. Lee, B. J. Bartholomew, “Digital Optical Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 241, 149 (1980).

R. A. Athale, S. H. Lee, “Development of an Optical Parallel Logic Device and a Half-Adder Circuit for Digital Optical Processing,” Opt. Eng. 18, 513 (1979).
[CrossRef]

Barr, H. S.

R. A. Athale, H. S. Barr, S. H. Lee, B. J. Bartholomew, “Digital Optical Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 241, 149 (1980).

Bartholomew, B. J.

R. A. Athale, H. S. Barr, S. H. Lee, B. J. Bartholomew, “Digital Optical Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 241, 149 (1980).

Collins, S. A.

Corbett, F. J.

B. A. Horwitz, F. J. Corbett, “The PROM—Theory and Applications for the Pockels Readout Optical Modulator,” Opt. Eng. 17, 353 (1978).

Fatehi, M. T.

Ferrano, G.

G. Ferrano, G. Hausler, “TV Optical Feedback Systems,” Opt. Eng. 19, 442 (1980).
[CrossRef]

Fujita, S.

T. Minemoto, H. Yoshimura, Y. Suemoto, S. Fujita, “Incoherent-to-Coherent Optical Image Converter of Transmission Type Using Bi12SiO20 Single Crystals,” Jpn. J. Appl. Phys. 18, 1727 (1979).
[CrossRef]

Gerlach, U. H.

U. H. Gerlach, U. K. Sengupta, S. A. Collins, “Single Spatial Light Modulator Bistable Optical Matrix Device Using Optical Feedback,” Opt. Eng. 19, 452 (1980).
[CrossRef]

U. K. Sengupta, U. H. Gerlach, S. A. Collins, “Bistable Optical Spatial Device Using Direct Optical Feedback,” Opt. Lett. 3, 199 (1978).
[CrossRef] [PubMed]

Hausler, G.

G. Ferrano, G. Hausler, “TV Optical Feedback Systems,” Opt. Eng. 19, 442 (1980).
[CrossRef]

Horwitz, B. A.

B. A. Horwitz, F. J. Corbett, “The PROM—Theory and Applications for the Pockels Readout Optical Modulator,” Opt. Eng. 17, 353 (1978).

Lee, S. H.

R. A. Athale, S. H. Lee, “Bistability and Thresholding by a New Photoconductor-Twisted Nematic Liquid Crystal Device with Optical Feedback,” Appl. Opt. 20, 1424 (1981).
[CrossRef] [PubMed]

R. A. Athale, H. S. Barr, S. H. Lee, B. J. Bartholomew, “Digital Optical Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 241, 149 (1980).

R. A. Athale, S. H. Lee, “Development of an Optical Parallel Logic Device and a Half-Adder Circuit for Digital Optical Processing,” Opt. Eng. 18, 513 (1979).
[CrossRef]

Lipson, S. G.

Minemoto, T.

T. Minemoto, K. Okamoto, K. Miyamoto, “Optical Parallel Logic Gate Using Spatial Light Modulators with the Pockels Effect,” Appl. Opt. 24, 2055 (1985).
[CrossRef] [PubMed]

T. Minemoto, H. Yoshimura, Y. Suemoto, S. Fujita, “Incoherent-to-Coherent Optical Image Converter of Transmission Type Using Bi12SiO20 Single Crystals,” Jpn. J. Appl. Phys. 18, 1727 (1979).
[CrossRef]

Miyamoto, K.

Nisenson, P.

Okamoto, K.

Sengupta, U. K.

U. H. Gerlach, U. K. Sengupta, S. A. Collins, “Single Spatial Light Modulator Bistable Optical Matrix Device Using Optical Feedback,” Opt. Eng. 19, 452 (1980).
[CrossRef]

U. K. Sengupta, U. H. Gerlach, S. A. Collins, “Bistable Optical Spatial Device Using Direct Optical Feedback,” Opt. Lett. 3, 199 (1978).
[CrossRef] [PubMed]

Suemoto, Y.

T. Minemoto, H. Yoshimura, Y. Suemoto, S. Fujita, “Incoherent-to-Coherent Optical Image Converter of Transmission Type Using Bi12SiO20 Single Crystals,” Jpn. J. Appl. Phys. 18, 1727 (1979).
[CrossRef]

Wasmundt, K. C.

Yoshimura, H.

T. Minemoto, H. Yoshimura, Y. Suemoto, S. Fujita, “Incoherent-to-Coherent Optical Image Converter of Transmission Type Using Bi12SiO20 Single Crystals,” Jpn. J. Appl. Phys. 18, 1727 (1979).
[CrossRef]

Appl. Opt. (5)

Jpn. J. Appl. Phys. (1)

T. Minemoto, H. Yoshimura, Y. Suemoto, S. Fujita, “Incoherent-to-Coherent Optical Image Converter of Transmission Type Using Bi12SiO20 Single Crystals,” Jpn. J. Appl. Phys. 18, 1727 (1979).
[CrossRef]

Opt. Eng. (4)

G. Ferrano, G. Hausler, “TV Optical Feedback Systems,” Opt. Eng. 19, 442 (1980).
[CrossRef]

B. A. Horwitz, F. J. Corbett, “The PROM—Theory and Applications for the Pockels Readout Optical Modulator,” Opt. Eng. 17, 353 (1978).

R. A. Athale, S. H. Lee, “Development of an Optical Parallel Logic Device and a Half-Adder Circuit for Digital Optical Processing,” Opt. Eng. 18, 513 (1979).
[CrossRef]

U. H. Gerlach, U. K. Sengupta, S. A. Collins, “Single Spatial Light Modulator Bistable Optical Matrix Device Using Optical Feedback,” Opt. Eng. 19, 452 (1980).
[CrossRef]

Opt. Lett. (1)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

R. A. Athale, H. S. Barr, S. H. Lee, B. J. Bartholomew, “Digital Optical Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 241, 149 (1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Arrangement of three PROM devices, a polarizer, and an analyzer (arrangement T1).

Fig. 2
Fig. 2

Brightness levels of output signals for various cases in arrangement T1: (a) υ < Vh/3, (b) υ = 2 Vh/3, (c) υ = Vh, and (d) υ0 = Vh/2 and u = Vh/12.

Fig. 3
Fig. 3

Arrangement of three PROM devices, a polarizer, and two analyzers (arrangement T2).

Fig. 4
Fig. 4

Arrangement of three PROM devices, a polarizer, and three analyzers (arrangement T3).

Fig. 5
Fig. 5

Schematic diagram of optical parallel logic gate: A0–A2, analyzers; DM1–DM3, dichroic mirrors; FL1–FL3, flashlamps; HV1–HV3, high-voltage sources; IR, interference filter; L1–L9, lenses; P, polarizer; SH1–SH4, shutters.

Fig. 6
Fig. 6

Some results with arrangement T1: (a) input signals, (b) theoretical results of operations P2, P3, and P4 shown in Table III, and (c) experimental results of these operations.

Fig. 7
Fig. 7

Result of base-line subtraction with arrangement T1 (an operation in the switching mode SW1, up and SW2, up shown in Table V): (a) pattern of Vt, (b) brightness levels for Vt values, (c) conceptual diagram of output signal, (d) actual output signal, and (e) theoretical result of the carry operation in a full-adder circuit.

Tables (8)

Tables Icon

Table I Values of Constants k2 and k3 for Various Cases

Tables Icon

Table II Values of Vt for Three Binary Variables In Arrangement T1

Tables Icon

Table III Possible Logic Functions of Three Binary Variables in Arrangement T1 when v < Vh/3

Tables Icon

Table IV Possible Logic Functions of Three Binary Variables in Arrangement T1 When v = 2Vh/3 or v = Vh

Tables Icon

Table V Voltage Drops in BSO Crystal Plates and Voltages Vt While Reading Out the Stored Signals In Base-Line Subtraction

Tables Icon

Table VI Values of Vt and V3 for Three Binary Variables in Arrangement T2

Tables Icon

Table VII Possible Logic Functions of Three Binary Variables In Arrangement T2

Tables Icon

Table VIII Possible Logic Functions of Three Binary Variables In Arrangement T3

Equations (47)

Equations on this page are rendered with MathJax. Learn more.

| a | 2 = sin 2 ( π 2 V 1 + k 2 V 2 + k 3 V 3 V h ) = sin 2 ( π 2 V t V h ) ,
V t = V 1 + k 2 V 2 + k 3 V 3 ,
| a | 2 = sin 2 ( π 2 V 1 + k 2 V 2 V h ) sin 2 ( π 2 V 3 V h ) = sin 2 ( π 2 V t V h ) sin 2 ( π 2 V 3 V h ) ,
V t = V 1 + k 2 V 2 .
| a | 2 = sin 2 ( π 2 V 1 V h ) sin 2 ( π 2 V 2 V h ) sin 2 ( π 2 V 3 V h ) .
Ā + B ̅ + C ̅
A ( B C ¯ ) + Ā ( B ̅ + C ̅ )
A ( B + C ) + Ā ( B C ¯ )
A ( B C ) + Ā ( B ̅ + C ̅ )
Ā + B ̅ + C
A ( B + C ̅ ) + Ā ( B C )
A + B + C ̅
Ā ( B + C ̅ ) + A ( B C )
Ā ( B C ) + A ( B ̅ + C )
Ā + B + C ̅
A + B ̅ + C
A ( B ̅ + C ̅ ) + Ā ( B C ¯ )
A ( B C ¯ ) + Ā ( B + C )
A + B ̅ + C ̅
Ā ( B + C ) + A ( B ̅ + C ̅ )
Ā ( B ̅ + C ̅ ) + A ( B C ¯ )
Ā ( B C ¯ ) + A ( B + C )
Ā ( B ̅ + C ) + A ( B C )
Ā ( B + C ̅ ) + A ( B ̅ + C )
Ā ( B C ) + A ( B + C ̅ )
Ā ( B + C ̅ ) + A ( B C )
Ā ( B C ) + A ( B ̅ + C )
Ā ( B ̅ + C ) + A ( B + C ̅ )
Ā ( B C ¯ ) + A ( B ̅ + C ̅ )
Ā ( B + C ) + A ( B C ¯ )
Ā ( B ̅ + C ̅ ) + A ( B + C )
Ā ( B C ¯ ) + A ( B + C )
( A B ¯ ) C ̅
( A B ¯ ) C
( A B ¯ ) C ̅
( A B ¯ ) C
( A + B ) C ̅
( A B ) C ̅
( Ā + B ) C ̅
( A + B ̅ ) C ̅
( A + B ̅ ) C
Ā B ̅ C ̅
Ā B ̅ C
Ā B C ̅
A B ̅ C ̅
A B ̅ C
A B C ̅

Metrics