Abstract

A long-path-length transmission cell has been used to measure the attenuation coefficients of purified H2O and D2O at various wavelengths between 250 and 580 nm. The principles governing the procedures and corrections for various sources of light attenuation in the transmission cell components are discussed. Detailed chemical histories of the H2O and D2O samples are given. The measured attenuation coefficients of H2O are lower than those of many previous determinations and, where comparable, are close to the record low values of Quickenden and Irvin [ J. Chem. Phys. 72, 4416 ( 1980)]. The measured attenuation coefficients of D2O are the lowest yet achieved and range from 32 × 10−4 cm−1 at 254 nm down to 1.1 × 10−4 cm−1 at 578 nm, attesting to the low level of impurities in our D2O. These results on light transmission in D2O indicate that a large 1000-Mg heavy water Cherenkov detector constructed for the purpose of neutrino detection is not limited by the attenuation length of radiation in the D2O.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Sinclair et al., “Proposal to Build a Neutrino Observatory in Sudbury, Canada,” in Proceedings, First Symposium on Underground Physics, Val d'Aosta, Italy (1985),to be published in I1 Nuovo Cimento (1985 in press).
  2. H. Kume, S. Sawaki, M. Ito, K. Arisaka, T. Kajita, A. Nishimura, A. Suzuki, “20 Inch Diameter Photomultiplier,” Nucl. Instrum. Methods 205, 443 (1983).
    [CrossRef]
  3. R. M. Bionta et al., “Search for Proton Decay into e+π°,” Phys. Rev. Lett. 51, 27 (1983);T. W. Jones et al., “Search for n-n̄ Oscillations in Oxygen,”; Phys. Rev. Lett. 52, 720 (1984);B. G. Cortez et al., “Search for Nucleon Decay into μ+K° and νK°,” Phys. Rev. Lett. 52, 1092 (1984).
    [CrossRef]
  4. K. Arisaka et al., “Results from the Kamioka Nucleon Decay Experiment.” in Proceedings, Nineteenth Rencontre de Moriond—Phenomenology of Gauge Theories, J. Tran Thanh Van, Ed. (Editions Frontières, by Gif sur Yvette, France, 1984), pp. 625–634.
  5. S. A. Sullivan, “Experimental Study of the Absorption in Distilled Water, Artificial Sea Water and Heavy Water in the Visible Region of the Spectrum,” J. Opt. Soc. Am. 53, 962 (1963).
    [CrossRef]
  6. H. Larzul, F. Gélébart, A. Johannin-Gilles, “Sur le spectre d'absorption de l'eau et de l'eau lourde dans l'ultraviolet,” C. R. Acad. Sci. Paris 261, 4701 (1965).
  7. A. C. Tam, C. K. N. Patel, “Optical Absorptions of Light and Heavy Water by Laser Optoacoustic Spectroscopy,” Appl. Opt. 18, 3348 (1979).
    [CrossRef] [PubMed]
  8. M. Hass, J. W. Davisson, “Absorption Coefficient of Pure Water at 488 and 541.5 nm by Adiabatic Laser Calorimetry,” J. Opt. Soc. Am. 67, 622 (1977).
    [CrossRef]
  9. A. Morel, L. Prieur, “Analysis of Variations in Ocean Color,” Limnol. Oceanogr. 22, 709 (1977).
    [CrossRef]
  10. M. R. Querry, P. G. Cary, R. C. Waring, “Split-Pulse Laser Method for Measuring Attenuation Coefficients of Transparent Liquids: Application to Deionized Filter Water in the Visible Region,” Appl. Opt. 17, 3587 (1978).
    [CrossRef] [PubMed]
  11. T. I. Quickenden, J. A. Irvin, “The Ultraviolet Absorption Spectrum of Liquid Water,” J. Chem. Phys. 72, 4416 (1980).
    [CrossRef]
  12. K. R. Shortt, National Research Council of Canada, Physics Division; private communication.
  13. A. Mehu, R. Abjean, A. Johannin-Gilles, “Mesure comparative des indices de réfraction de l'eau légère et de l'eau lourde à différentes températures. Application àla mesure des concentrations des solutions de H2O–D2O,” J. Chim. Phys. Paris 63, 1569 (1966);“Variation de la réfraction molaire de D2O et de H2O en fonction de la température et de la longueur d'onde,” 67, 19 (1970).

1983 (2)

H. Kume, S. Sawaki, M. Ito, K. Arisaka, T. Kajita, A. Nishimura, A. Suzuki, “20 Inch Diameter Photomultiplier,” Nucl. Instrum. Methods 205, 443 (1983).
[CrossRef]

R. M. Bionta et al., “Search for Proton Decay into e+π°,” Phys. Rev. Lett. 51, 27 (1983);T. W. Jones et al., “Search for n-n̄ Oscillations in Oxygen,”; Phys. Rev. Lett. 52, 720 (1984);B. G. Cortez et al., “Search for Nucleon Decay into μ+K° and νK°,” Phys. Rev. Lett. 52, 1092 (1984).
[CrossRef]

1980 (1)

T. I. Quickenden, J. A. Irvin, “The Ultraviolet Absorption Spectrum of Liquid Water,” J. Chem. Phys. 72, 4416 (1980).
[CrossRef]

1979 (1)

1978 (1)

1977 (2)

1966 (1)

A. Mehu, R. Abjean, A. Johannin-Gilles, “Mesure comparative des indices de réfraction de l'eau légère et de l'eau lourde à différentes températures. Application àla mesure des concentrations des solutions de H2O–D2O,” J. Chim. Phys. Paris 63, 1569 (1966);“Variation de la réfraction molaire de D2O et de H2O en fonction de la température et de la longueur d'onde,” 67, 19 (1970).

1965 (1)

H. Larzul, F. Gélébart, A. Johannin-Gilles, “Sur le spectre d'absorption de l'eau et de l'eau lourde dans l'ultraviolet,” C. R. Acad. Sci. Paris 261, 4701 (1965).

1963 (1)

Abjean, R.

A. Mehu, R. Abjean, A. Johannin-Gilles, “Mesure comparative des indices de réfraction de l'eau légère et de l'eau lourde à différentes températures. Application àla mesure des concentrations des solutions de H2O–D2O,” J. Chim. Phys. Paris 63, 1569 (1966);“Variation de la réfraction molaire de D2O et de H2O en fonction de la température et de la longueur d'onde,” 67, 19 (1970).

Arisaka, K.

H. Kume, S. Sawaki, M. Ito, K. Arisaka, T. Kajita, A. Nishimura, A. Suzuki, “20 Inch Diameter Photomultiplier,” Nucl. Instrum. Methods 205, 443 (1983).
[CrossRef]

K. Arisaka et al., “Results from the Kamioka Nucleon Decay Experiment.” in Proceedings, Nineteenth Rencontre de Moriond—Phenomenology of Gauge Theories, J. Tran Thanh Van, Ed. (Editions Frontières, by Gif sur Yvette, France, 1984), pp. 625–634.

Bionta, R. M.

R. M. Bionta et al., “Search for Proton Decay into e+π°,” Phys. Rev. Lett. 51, 27 (1983);T. W. Jones et al., “Search for n-n̄ Oscillations in Oxygen,”; Phys. Rev. Lett. 52, 720 (1984);B. G. Cortez et al., “Search for Nucleon Decay into μ+K° and νK°,” Phys. Rev. Lett. 52, 1092 (1984).
[CrossRef]

Cary, P. G.

Davisson, J. W.

Gélébart, F.

H. Larzul, F. Gélébart, A. Johannin-Gilles, “Sur le spectre d'absorption de l'eau et de l'eau lourde dans l'ultraviolet,” C. R. Acad. Sci. Paris 261, 4701 (1965).

Hass, M.

Irvin, J. A.

T. I. Quickenden, J. A. Irvin, “The Ultraviolet Absorption Spectrum of Liquid Water,” J. Chem. Phys. 72, 4416 (1980).
[CrossRef]

Ito, M.

H. Kume, S. Sawaki, M. Ito, K. Arisaka, T. Kajita, A. Nishimura, A. Suzuki, “20 Inch Diameter Photomultiplier,” Nucl. Instrum. Methods 205, 443 (1983).
[CrossRef]

Johannin-Gilles, A.

A. Mehu, R. Abjean, A. Johannin-Gilles, “Mesure comparative des indices de réfraction de l'eau légère et de l'eau lourde à différentes températures. Application àla mesure des concentrations des solutions de H2O–D2O,” J. Chim. Phys. Paris 63, 1569 (1966);“Variation de la réfraction molaire de D2O et de H2O en fonction de la température et de la longueur d'onde,” 67, 19 (1970).

H. Larzul, F. Gélébart, A. Johannin-Gilles, “Sur le spectre d'absorption de l'eau et de l'eau lourde dans l'ultraviolet,” C. R. Acad. Sci. Paris 261, 4701 (1965).

Kajita, T.

H. Kume, S. Sawaki, M. Ito, K. Arisaka, T. Kajita, A. Nishimura, A. Suzuki, “20 Inch Diameter Photomultiplier,” Nucl. Instrum. Methods 205, 443 (1983).
[CrossRef]

Kume, H.

H. Kume, S. Sawaki, M. Ito, K. Arisaka, T. Kajita, A. Nishimura, A. Suzuki, “20 Inch Diameter Photomultiplier,” Nucl. Instrum. Methods 205, 443 (1983).
[CrossRef]

Larzul, H.

H. Larzul, F. Gélébart, A. Johannin-Gilles, “Sur le spectre d'absorption de l'eau et de l'eau lourde dans l'ultraviolet,” C. R. Acad. Sci. Paris 261, 4701 (1965).

Mehu, A.

A. Mehu, R. Abjean, A. Johannin-Gilles, “Mesure comparative des indices de réfraction de l'eau légère et de l'eau lourde à différentes températures. Application àla mesure des concentrations des solutions de H2O–D2O,” J. Chim. Phys. Paris 63, 1569 (1966);“Variation de la réfraction molaire de D2O et de H2O en fonction de la température et de la longueur d'onde,” 67, 19 (1970).

Morel, A.

A. Morel, L. Prieur, “Analysis of Variations in Ocean Color,” Limnol. Oceanogr. 22, 709 (1977).
[CrossRef]

Nishimura, A.

H. Kume, S. Sawaki, M. Ito, K. Arisaka, T. Kajita, A. Nishimura, A. Suzuki, “20 Inch Diameter Photomultiplier,” Nucl. Instrum. Methods 205, 443 (1983).
[CrossRef]

Patel, C. K. N.

Prieur, L.

A. Morel, L. Prieur, “Analysis of Variations in Ocean Color,” Limnol. Oceanogr. 22, 709 (1977).
[CrossRef]

Querry, M. R.

Quickenden, T. I.

T. I. Quickenden, J. A. Irvin, “The Ultraviolet Absorption Spectrum of Liquid Water,” J. Chem. Phys. 72, 4416 (1980).
[CrossRef]

Sawaki, S.

H. Kume, S. Sawaki, M. Ito, K. Arisaka, T. Kajita, A. Nishimura, A. Suzuki, “20 Inch Diameter Photomultiplier,” Nucl. Instrum. Methods 205, 443 (1983).
[CrossRef]

Shortt, K. R.

K. R. Shortt, National Research Council of Canada, Physics Division; private communication.

Sinclair, D.

D. Sinclair et al., “Proposal to Build a Neutrino Observatory in Sudbury, Canada,” in Proceedings, First Symposium on Underground Physics, Val d'Aosta, Italy (1985),to be published in I1 Nuovo Cimento (1985 in press).

Sullivan, S. A.

Suzuki, A.

H. Kume, S. Sawaki, M. Ito, K. Arisaka, T. Kajita, A. Nishimura, A. Suzuki, “20 Inch Diameter Photomultiplier,” Nucl. Instrum. Methods 205, 443 (1983).
[CrossRef]

Tam, A. C.

Waring, R. C.

Appl. Opt. (2)

C. R. Acad. Sci. Paris (1)

H. Larzul, F. Gélébart, A. Johannin-Gilles, “Sur le spectre d'absorption de l'eau et de l'eau lourde dans l'ultraviolet,” C. R. Acad. Sci. Paris 261, 4701 (1965).

J. Chem. Phys. (1)

T. I. Quickenden, J. A. Irvin, “The Ultraviolet Absorption Spectrum of Liquid Water,” J. Chem. Phys. 72, 4416 (1980).
[CrossRef]

J. Chim. Phys. Paris (1)

A. Mehu, R. Abjean, A. Johannin-Gilles, “Mesure comparative des indices de réfraction de l'eau légère et de l'eau lourde à différentes températures. Application àla mesure des concentrations des solutions de H2O–D2O,” J. Chim. Phys. Paris 63, 1569 (1966);“Variation de la réfraction molaire de D2O et de H2O en fonction de la température et de la longueur d'onde,” 67, 19 (1970).

J. Opt. Soc. Am. (2)

Limnol. Oceanogr. (1)

A. Morel, L. Prieur, “Analysis of Variations in Ocean Color,” Limnol. Oceanogr. 22, 709 (1977).
[CrossRef]

Nucl. Instrum. Methods (1)

H. Kume, S. Sawaki, M. Ito, K. Arisaka, T. Kajita, A. Nishimura, A. Suzuki, “20 Inch Diameter Photomultiplier,” Nucl. Instrum. Methods 205, 443 (1983).
[CrossRef]

Phys. Rev. Lett. (1)

R. M. Bionta et al., “Search for Proton Decay into e+π°,” Phys. Rev. Lett. 51, 27 (1983);T. W. Jones et al., “Search for n-n̄ Oscillations in Oxygen,”; Phys. Rev. Lett. 52, 720 (1984);B. G. Cortez et al., “Search for Nucleon Decay into μ+K° and νK°,” Phys. Rev. Lett. 52, 1092 (1984).
[CrossRef]

Other (3)

K. Arisaka et al., “Results from the Kamioka Nucleon Decay Experiment.” in Proceedings, Nineteenth Rencontre de Moriond—Phenomenology of Gauge Theories, J. Tran Thanh Van, Ed. (Editions Frontières, by Gif sur Yvette, France, 1984), pp. 625–634.

D. Sinclair et al., “Proposal to Build a Neutrino Observatory in Sudbury, Canada,” in Proceedings, First Symposium on Underground Physics, Val d'Aosta, Italy (1985),to be published in I1 Nuovo Cimento (1985 in press).

K. R. Shortt, National Research Council of Canada, Physics Division; private communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Conceptual design for the proposed detector. The heavy water is contained in an acrylic tank and is shielded from activity in the rock by low activity concrete and light water. The Cherenkov light is detected by an array of 2400 PMTs of 50-cm diameter. For clarity, a number of details have not been drawn. These include the steel containment tank, a black light shield behind the PMTs, and the tunnel required for excavation.

Fig. 2
Fig. 2

Schematic diagram of the apparatus employed to measure the transmittance of visible and UV light in H2O and D2O. The water cell could be translated horizontally on a carriage in and out of the direct beam.

Fig. 3
Fig. 3

Attenuation coefficients plotted on a linear scale for H2O and D2O as a function of frequency of light.

Fig. 4
Fig. 4

Experimental attenuation coefficients for light water (H2O) as a function of frequency. The solid circles with error bars represent the present data. The data from some other experiments are also given for comparison. The dotted line represents the contribution of Rayleigh scattering to absorptivity.

Fig. 5
Fig. 5

Experimental attenuation coefficients for heavy water (D2O) as a function of frequency. The solid circles with error bars represent the present data. The data from three other known works are also given for comparison. The dotted line represents the contribution of Rayleigh scattering to the absorptivity.

Tables (1)

Tables Icon

Table I Measured Light Attenuation in H2O and D2O

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I = I 0 exp [ α ( ν ) L ]
α ( ν ) = a ( ν ) + b ( ν ) ,
T = I T I 0 × M 0 M T ,
T = t Q 2 t W 2 t A 2 exp ( α L ) ,
α = ln ( 1 t Q 2 t W 2 t A 2 × I T M 0 I 0 M T ) / L .
t Q = 1 ( n Q 1 n Q + 1 ) 2 ;
t W = 1 ( n Q n W n Q + n W ) 2 .
Δ α = 1 L ( Δ K K ) 2 + ( Δ T T ) 2 .
Δ α = ± 0.7 × 10 4 cm 1 ,

Metrics