Abstract

A high-resolution spectroscopic facility, consisting of a 6.65-m vertical dispersion off-plane Eagle spectrograph/monochromator and a unique predisperser system of zero-dispersion type, has been designed and constructed at the Photon Factory. A description is given of design principle, optical system, mechanical arrangement, vacuum system, control system, and performance in the spectrograph mode. The resolving power was estimated from the separation between two closely lying lines of Ar I at ∼79 nm in the seventh order to be >2.5 × 105 —the highest resolving power ever demonstrated for this spectral region.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Namioka, “Theory of the Concave Grating. II. Application of the Theory to the Off-Plane Eagle Mounting in a Vacuum Spectrograph,” J. Opt. Soc. Am. 49, 460 (1959).
    [Crossref]
  2. T. Namioka, “Design of High-Resolution Monochromator for the Vacuum Ultraviolet. An Application of Off-Plane Eagle Mounting,” J. Opt. Soc. Am. 49, 961 (1959).
    [Crossref]
  3. P. G. Wilkinson, “A High Resolution Spectrograph for the Vacuum Ultraviolet,” J. Mol. Spectrosc. 1, 288 (1957).
    [Crossref]
  4. M. L. Ginter, D. S. Ginter, C. M. Brown, “Need for High Resolution in VUV Rydberg State Spectroscopy,” Appl. Opt. 19, 4015 (1980).
    [Crossref] [PubMed]
  5. T. Namioka, H. Noda, K. Goto, T. Katayama, “Design Studies of Mirror-Grating Systems for Use with an Electron Storage Ring Source at the Photon Factory,” Nucl. Instrum. Methods 208, 215 (1983).
    [Crossref]
  6. H. E. Blackwell, G. S. Shipp, M. Ogawa, G. L. Weissler, “Properties of a Plane Grating Predisperser Used with a Grazing Incidence Vacuum Spectrograph,” J. Opt. Soc. Am. 56, 665 (1966).
    [Crossref]
  7. A. E. Douglas, G. Herzberg, “Separation of Overlapping Orders of a Concave Grating Spectrograph in the Vacuum Ultraviolet Region,” J. Opt. Soc. Am. 47, 625 (1957).
    [Crossref]
  8. M. L. Ginter, “New High Resolution [>1.5 × 105] VUV Spectroscopic Facilities in Japan and the United States,” to be published in Nucl. Instrum. Methods (1986).
  9. T. Koide et al., “Mirror System for a VUV Beam Line at the Photon Factory,” to be published in Nucl. Instrum. MethodsA239, 350 (1986).
  10. K. Yoshino, “Absorption Spectrum of the Argon Atom in the Vacuum-Ultraviolet Region,” J. Opt. Soc. Am. 60, 1220 (1970).
    [Crossref]
  11. K. Yoshino, Y. Tanaka, “Absorption Spectrum of Krypton in the Vacuum UV Region,” J. Opt. Soc. Am. 69, 159 (1979).
    [Crossref]
  12. M. A. Baig, J. P. Connerade, “Centrifugal Barrier Effects in the Rydberg States and Autoionising Resonances of Neon,” J. Phys. B. 17, 1785 (1984).
    [Crossref]
  13. V. Kaufman, B. Edlén, “Reference Wavelength from Atomic Spectra in the Range 15 Å to 25000 Å,” J. Phys. Chem. Ref. Data 3, 825 (1974).
    [Crossref]
  14. E. R. Johnson, M. Le Dourneuf, “Analysis of the Autoionising Resonances in Neon near 575 Å,” J. Phys. B 13, L13 (1980).
    [Crossref]
  15. K. Radler, J. Berkowitz, “Photoionization Mass Spectrometry of Neon Using Synchrotron Radiation: Anomalous Variation of Resonance Widths in the Noble Gases,” J. Chem. Phys. 70, 216 (1979).
    [Crossref]

1984 (1)

M. A. Baig, J. P. Connerade, “Centrifugal Barrier Effects in the Rydberg States and Autoionising Resonances of Neon,” J. Phys. B. 17, 1785 (1984).
[Crossref]

1983 (1)

T. Namioka, H. Noda, K. Goto, T. Katayama, “Design Studies of Mirror-Grating Systems for Use with an Electron Storage Ring Source at the Photon Factory,” Nucl. Instrum. Methods 208, 215 (1983).
[Crossref]

1980 (2)

M. L. Ginter, D. S. Ginter, C. M. Brown, “Need for High Resolution in VUV Rydberg State Spectroscopy,” Appl. Opt. 19, 4015 (1980).
[Crossref] [PubMed]

E. R. Johnson, M. Le Dourneuf, “Analysis of the Autoionising Resonances in Neon near 575 Å,” J. Phys. B 13, L13 (1980).
[Crossref]

1979 (2)

K. Radler, J. Berkowitz, “Photoionization Mass Spectrometry of Neon Using Synchrotron Radiation: Anomalous Variation of Resonance Widths in the Noble Gases,” J. Chem. Phys. 70, 216 (1979).
[Crossref]

K. Yoshino, Y. Tanaka, “Absorption Spectrum of Krypton in the Vacuum UV Region,” J. Opt. Soc. Am. 69, 159 (1979).
[Crossref]

1974 (1)

V. Kaufman, B. Edlén, “Reference Wavelength from Atomic Spectra in the Range 15 Å to 25000 Å,” J. Phys. Chem. Ref. Data 3, 825 (1974).
[Crossref]

1970 (1)

1966 (1)

1959 (2)

1957 (2)

Baig, M. A.

M. A. Baig, J. P. Connerade, “Centrifugal Barrier Effects in the Rydberg States and Autoionising Resonances of Neon,” J. Phys. B. 17, 1785 (1984).
[Crossref]

Berkowitz, J.

K. Radler, J. Berkowitz, “Photoionization Mass Spectrometry of Neon Using Synchrotron Radiation: Anomalous Variation of Resonance Widths in the Noble Gases,” J. Chem. Phys. 70, 216 (1979).
[Crossref]

Blackwell, H. E.

Brown, C. M.

Connerade, J. P.

M. A. Baig, J. P. Connerade, “Centrifugal Barrier Effects in the Rydberg States and Autoionising Resonances of Neon,” J. Phys. B. 17, 1785 (1984).
[Crossref]

Douglas, A. E.

Edlén, B.

V. Kaufman, B. Edlén, “Reference Wavelength from Atomic Spectra in the Range 15 Å to 25000 Å,” J. Phys. Chem. Ref. Data 3, 825 (1974).
[Crossref]

Ginter, D. S.

Ginter, M. L.

M. L. Ginter, D. S. Ginter, C. M. Brown, “Need for High Resolution in VUV Rydberg State Spectroscopy,” Appl. Opt. 19, 4015 (1980).
[Crossref] [PubMed]

M. L. Ginter, “New High Resolution [>1.5 × 105] VUV Spectroscopic Facilities in Japan and the United States,” to be published in Nucl. Instrum. Methods (1986).

Goto, K.

T. Namioka, H. Noda, K. Goto, T. Katayama, “Design Studies of Mirror-Grating Systems for Use with an Electron Storage Ring Source at the Photon Factory,” Nucl. Instrum. Methods 208, 215 (1983).
[Crossref]

Herzberg, G.

Johnson, E. R.

E. R. Johnson, M. Le Dourneuf, “Analysis of the Autoionising Resonances in Neon near 575 Å,” J. Phys. B 13, L13 (1980).
[Crossref]

Katayama, T.

T. Namioka, H. Noda, K. Goto, T. Katayama, “Design Studies of Mirror-Grating Systems for Use with an Electron Storage Ring Source at the Photon Factory,” Nucl. Instrum. Methods 208, 215 (1983).
[Crossref]

Kaufman, V.

V. Kaufman, B. Edlén, “Reference Wavelength from Atomic Spectra in the Range 15 Å to 25000 Å,” J. Phys. Chem. Ref. Data 3, 825 (1974).
[Crossref]

Koide, T.

T. Koide et al., “Mirror System for a VUV Beam Line at the Photon Factory,” to be published in Nucl. Instrum. MethodsA239, 350 (1986).

Le Dourneuf, M.

E. R. Johnson, M. Le Dourneuf, “Analysis of the Autoionising Resonances in Neon near 575 Å,” J. Phys. B 13, L13 (1980).
[Crossref]

Namioka, T.

Noda, H.

T. Namioka, H. Noda, K. Goto, T. Katayama, “Design Studies of Mirror-Grating Systems for Use with an Electron Storage Ring Source at the Photon Factory,” Nucl. Instrum. Methods 208, 215 (1983).
[Crossref]

Ogawa, M.

Radler, K.

K. Radler, J. Berkowitz, “Photoionization Mass Spectrometry of Neon Using Synchrotron Radiation: Anomalous Variation of Resonance Widths in the Noble Gases,” J. Chem. Phys. 70, 216 (1979).
[Crossref]

Shipp, G. S.

Tanaka, Y.

Weissler, G. L.

Wilkinson, P. G.

P. G. Wilkinson, “A High Resolution Spectrograph for the Vacuum Ultraviolet,” J. Mol. Spectrosc. 1, 288 (1957).
[Crossref]

Yoshino, K.

Appl. Opt. (1)

J. Chem. Phys. (1)

K. Radler, J. Berkowitz, “Photoionization Mass Spectrometry of Neon Using Synchrotron Radiation: Anomalous Variation of Resonance Widths in the Noble Gases,” J. Chem. Phys. 70, 216 (1979).
[Crossref]

J. Mol. Spectrosc. (1)

P. G. Wilkinson, “A High Resolution Spectrograph for the Vacuum Ultraviolet,” J. Mol. Spectrosc. 1, 288 (1957).
[Crossref]

J. Opt. Soc. Am. (6)

J. Phys. B (1)

E. R. Johnson, M. Le Dourneuf, “Analysis of the Autoionising Resonances in Neon near 575 Å,” J. Phys. B 13, L13 (1980).
[Crossref]

J. Phys. B. (1)

M. A. Baig, J. P. Connerade, “Centrifugal Barrier Effects in the Rydberg States and Autoionising Resonances of Neon,” J. Phys. B. 17, 1785 (1984).
[Crossref]

J. Phys. Chem. Ref. Data (1)

V. Kaufman, B. Edlén, “Reference Wavelength from Atomic Spectra in the Range 15 Å to 25000 Å,” J. Phys. Chem. Ref. Data 3, 825 (1974).
[Crossref]

Nucl. Instrum. Methods (1)

T. Namioka, H. Noda, K. Goto, T. Katayama, “Design Studies of Mirror-Grating Systems for Use with an Electron Storage Ring Source at the Photon Factory,” Nucl. Instrum. Methods 208, 215 (1983).
[Crossref]

Other (2)

M. L. Ginter, “New High Resolution [>1.5 × 105] VUV Spectroscopic Facilities in Japan and the United States,” to be published in Nucl. Instrum. Methods (1986).

T. Koide et al., “Mirror System for a VUV Beam Line at the Photon Factory,” to be published in Nucl. Instrum. MethodsA239, 350 (1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic of the optical system for illustrating the principle of the predisperser: M, plane mirror; G1 and G2, foregratings; G3, main grating.

Fig. 2
Fig. 2

Predisperser of grazing incidence type7 and its expected performance: (a) schematic of the predisperser: L, light source; G, concave grating with 135 grooves/mm, 3-m radius of curvature, and a ruled area of 30 (H) × 60 (W) mm2; S, entrance slit of the main spectrograph; (b), (c) computed line profiles of 95-, 100-, and 105-nm radiation in the plane of the slit S, respectively, for a 4- × 4-mm2 source and a 0.4- × 4-mm2 source.

Fig. 3
Fig. 3

Optical system of the 6VOPE facility: P, source point; SR, synchrotron radiation; M, SiC plane mirror; G1 G2, foregratings in the predisperser system; M1 M2, concave mirrors whose radii of curvature and dimensions are the same as those of G1 and G2; S1, intermediate slit; S2, entrance slit of 6VOPE; G3/G3′, main gratings of 6VOPE.

Fig. 4
Fig. 4

Schematic of an auxiliary optical system for providing a comparison spectrum: L, hollow cathode lamp; Mc, concave mirrors; Mp, plane mirror; M3, switching mirror; S2, entrance slit of 6VOPE.

Fig. 5
Fig. 5

Schematic layout of the 6VOPE facility showing mechanical arrangements, vacuum chambers, pumps, and so on: 1, M chamber, 2, G1 chamber; 3, S1 housing; 4, G2 chamber; 5, S2 housing; 6, main vacuum tank; 7, light trap; 8, dust cover for G3 tank, 9, camera/detector housing; 10, optical system for a comparison spectrum: IP, ion pump; Ti, titanium sublimation pump; TMP, turbomolecular pump; RP, rotary pump; MB, mechanical-booster pump; V, valve.

Fig. 6
Fig. 6

G1 chamber and S1 housing on the first floor.

Fig. 7
Fig. 7

6VOPE facility from the end of the G3 chamber.

Fig. 8
Fig. 8

6VOPE facility from the G2 chamber side.

Fig. 9
Fig. 9

Block diagram of the control system.

Fig. 10
Fig. 10

Absorption spectra of the (0,0), (1,0), (2,0), and (3,0) bands of the Schumann-Runge system in the first, second, and third orders of G3. These spectra show clearly that only the desired portion of SR is delivered into 6VOPE.

Fig. 11
Fig. 11

Absorption spectrum of Ar I taken in the seventh order of G3 with an argon pressure of 4.5 × 10−4 Torr in the main tank, 8-min exposure, and a slit width of 10 μm. The center wavelength was 79 nm, and the bandpass was about ±2.5 nm.

Fig. 12
Fig. 12

Densitometer trace of the absorption spectrum of Ar I in the 78.84–79.09-nm region taken in the seventh order of G3 with an argon pressure of 1.5 × 10−4 Torr, other conditions being the same as those of Fig. 11.

Fig. 13
Fig. 13

Absorption spectrum of Ne i taken in the tenth order of G3 with a center wavelength of 58 nm, a bandpass of about ±2 nm, a neon pressure of 8.0 × 10−4 Torr, 40-min exposure, and a slit width of 10 μm.

Tables (1)

Tables Icon

Table I Optical Elements of the 6VOPE Facility

Metrics