Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Klett, “Lidar Inversion with Variable Backscatter/Extinction Ratios,” Appl. Opt. 24, 1638 (1985).
    [CrossRef] [PubMed]
  2. F. G. Fernald, B. M. Herman, J. R. Reagan, “Determination of Aerosol Height Distributions by Lidar,” J. Appl.Meteorol. 11, 482 (1972).
    [CrossRef]
  3. F. G. Fernald, “Analysis of Atmospheric Lidar Observations: Some Comments,” Appl. Opt. 23, 652 (1984).
    [CrossRef] [PubMed]
  4. J. A. Ferguson, D. H. Stephens, “Algorithm for Inverting Lidar Returns,” Appl. Opt. 22, 3673 (1983).
    [CrossRef] [PubMed]
  5. J. M. Mulders, “Algorithm for Inverting Lidar Returns: Comment,” Appl. Opt. 23, 2855 (1984).
    [CrossRef] [PubMed]

1985 (1)

1984 (2)

1983 (1)

1972 (1)

F. G. Fernald, B. M. Herman, J. R. Reagan, “Determination of Aerosol Height Distributions by Lidar,” J. Appl.Meteorol. 11, 482 (1972).
[CrossRef]

Ferguson, J. A.

Fernald, F. G.

F. G. Fernald, “Analysis of Atmospheric Lidar Observations: Some Comments,” Appl. Opt. 23, 652 (1984).
[CrossRef] [PubMed]

F. G. Fernald, B. M. Herman, J. R. Reagan, “Determination of Aerosol Height Distributions by Lidar,” J. Appl.Meteorol. 11, 482 (1972).
[CrossRef]

Herman, B. M.

F. G. Fernald, B. M. Herman, J. R. Reagan, “Determination of Aerosol Height Distributions by Lidar,” J. Appl.Meteorol. 11, 482 (1972).
[CrossRef]

Klett, J. D.

Mulders, J. M.

Reagan, J. R.

F. G. Fernald, B. M. Herman, J. R. Reagan, “Determination of Aerosol Height Distributions by Lidar,” J. Appl.Meteorol. 11, 482 (1972).
[CrossRef]

Stephens, D. H.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (15)

Equations on this page are rendered with MathJax. Learn more.

P ( r ) = C G 1 r 2 ( β R + β M ) exp [ 2 0 r ( σ R + σ M ) d r ] ,
σ ( r ) = σ R ( r ) + σ M ( r ) = S R β R ( r ) + S M ( r ) β M ( r )
S S m = S S m 2 B R r r m β R d r + 2 r r m β P B P d r ,
I 0 = 0 r 0 ( σ R + σ M ) d r
δ M = r 1 r 2 σ M ( r ) d r ;
T M ( r ) = exp [ 0 r σ M ( r ) d r ] .
σ M ( r ) = S M ( r ) β R ( r ) + Z ( r ) N ( r ) ,
Z ( r ) = S M ( r ) r 2 P ( r ) exp { 2 r r m [ S M ( r ) S R ] β R ( r ) d r } , N ( r ) = S M m r m 2 P m S M m β R m + σ M m + 2 r r m Z ( r ) d r ,
d d r ( r 2 P ) = 1 β d β d r 2 σ .
β M ( r ) = S M 1 ( r ) σ M ( r ) and σ R ( r ) = S R β R ( r ) ,
d σ M d r = 2 σ M 2 + Q σ M + R ,
Q ( r ) = d d r [ ln ( r 2 P ) ] + 2 β R ( S R + S M ) + 1 S M d S M d r , R ( r ) = S M β R { d d r [ ln ( r 2 P ) ] + 2 S R β R } S M d β R d r .
d V d r V 2 = d T d r T 2
T = ½ Q 2 S M β R .
σ M ( r ) = 1 2 U ( r ) S M ( r ) β R ( r )

Metrics