Abstract

The planning of an optical monitoring process for nonquarterwave stacks, using standard equipment for turning value monitoring, is a rather complicated procedure. It is shown that by using a computer program together with some simple rules the planning becomes a more straightforward task. Detailed examples are presented.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Macleod, “Turning Value Monitoring of Narrow-Band All-Dielectric Thin-Film Optical Filter,” Opt. Acta 19, no. 1, 1 (1972).
    [CrossRef]
  2. H. A. Macleod, E. Pelletier, “Error Compensation Mechanism in Some Thin-Film Monitoring Systems,” Opt. Acta 24, 907 (1977).
    [CrossRef]
  3. H. A. Macleod, “Monitoring of Optical Coatings,” Appl. Opt. 20, 82 (1981).
    [CrossRef] [PubMed]
  4. B. Vidal, E. Pelletier, “Nonquarterwave Multilayer Filters: Optical Monitoring with a Minicomputer Allowing Correction of Thickness Errors,” Appl. Opt. 18, 3857 (1979).
    [PubMed]
  5. P. Bousquet, E. Pelletier, “Optical Thin Film Monitoring —Recent Advances and Limitations,” Thin Solid Films 77, 165 (1981).
    [CrossRef]
  6. B. Vidal, A. Fornier, E. Pelletier, “Wideband Optical Monitoring of Nonquarterwave Multilayer Filters,” Appl. Opt. 18, 3851 (1979).
    [PubMed]
  7. H. A. Macleod, Thin Film Optical Filters (Hilger, London, 1969).
  8. A. J. Vermeulen, “Some Phenomena Connected with the Optical Monitoring of Thin-Film Deposition, and Their Application to Optical Coatings,” Opt. Acta 18, no. 7, 351 (1971).
    [CrossRef]
  9. R. Hermann, A. Zöller, “Automatic Control of Optical Layer Fabrication Processesuo,” Proc. Soc. Photo-Opt. Instrum. Eng. 401, 83 (1983).
  10. C. J. van der Laan, H. J. Frankena, “Monitoring of Optical Thin Films Using a Quartz Cristal Monitor,” Vacuum 27, 391 (1977).
    [CrossRef]
  11. This publication is based partly on an oral presentation given at the conference of the Associazione Italiano Vuoto in Florence, 8 Oct. 1984.

1983

R. Hermann, A. Zöller, “Automatic Control of Optical Layer Fabrication Processesuo,” Proc. Soc. Photo-Opt. Instrum. Eng. 401, 83 (1983).

1981

P. Bousquet, E. Pelletier, “Optical Thin Film Monitoring —Recent Advances and Limitations,” Thin Solid Films 77, 165 (1981).
[CrossRef]

H. A. Macleod, “Monitoring of Optical Coatings,” Appl. Opt. 20, 82 (1981).
[CrossRef] [PubMed]

1979

1977

C. J. van der Laan, H. J. Frankena, “Monitoring of Optical Thin Films Using a Quartz Cristal Monitor,” Vacuum 27, 391 (1977).
[CrossRef]

H. A. Macleod, E. Pelletier, “Error Compensation Mechanism in Some Thin-Film Monitoring Systems,” Opt. Acta 24, 907 (1977).
[CrossRef]

1972

H. A. Macleod, “Turning Value Monitoring of Narrow-Band All-Dielectric Thin-Film Optical Filter,” Opt. Acta 19, no. 1, 1 (1972).
[CrossRef]

1971

A. J. Vermeulen, “Some Phenomena Connected with the Optical Monitoring of Thin-Film Deposition, and Their Application to Optical Coatings,” Opt. Acta 18, no. 7, 351 (1971).
[CrossRef]

Bousquet, P.

P. Bousquet, E. Pelletier, “Optical Thin Film Monitoring —Recent Advances and Limitations,” Thin Solid Films 77, 165 (1981).
[CrossRef]

Fornier, A.

Frankena, H. J.

C. J. van der Laan, H. J. Frankena, “Monitoring of Optical Thin Films Using a Quartz Cristal Monitor,” Vacuum 27, 391 (1977).
[CrossRef]

Hermann, R.

R. Hermann, A. Zöller, “Automatic Control of Optical Layer Fabrication Processesuo,” Proc. Soc. Photo-Opt. Instrum. Eng. 401, 83 (1983).

Macleod, H. A.

H. A. Macleod, “Monitoring of Optical Coatings,” Appl. Opt. 20, 82 (1981).
[CrossRef] [PubMed]

H. A. Macleod, E. Pelletier, “Error Compensation Mechanism in Some Thin-Film Monitoring Systems,” Opt. Acta 24, 907 (1977).
[CrossRef]

H. A. Macleod, “Turning Value Monitoring of Narrow-Band All-Dielectric Thin-Film Optical Filter,” Opt. Acta 19, no. 1, 1 (1972).
[CrossRef]

H. A. Macleod, Thin Film Optical Filters (Hilger, London, 1969).

Pelletier, E.

P. Bousquet, E. Pelletier, “Optical Thin Film Monitoring —Recent Advances and Limitations,” Thin Solid Films 77, 165 (1981).
[CrossRef]

B. Vidal, A. Fornier, E. Pelletier, “Wideband Optical Monitoring of Nonquarterwave Multilayer Filters,” Appl. Opt. 18, 3851 (1979).
[PubMed]

B. Vidal, E. Pelletier, “Nonquarterwave Multilayer Filters: Optical Monitoring with a Minicomputer Allowing Correction of Thickness Errors,” Appl. Opt. 18, 3857 (1979).
[PubMed]

H. A. Macleod, E. Pelletier, “Error Compensation Mechanism in Some Thin-Film Monitoring Systems,” Opt. Acta 24, 907 (1977).
[CrossRef]

van der Laan, C. J.

C. J. van der Laan, H. J. Frankena, “Monitoring of Optical Thin Films Using a Quartz Cristal Monitor,” Vacuum 27, 391 (1977).
[CrossRef]

Vermeulen, A. J.

A. J. Vermeulen, “Some Phenomena Connected with the Optical Monitoring of Thin-Film Deposition, and Their Application to Optical Coatings,” Opt. Acta 18, no. 7, 351 (1971).
[CrossRef]

Vidal, B.

Zöller, A.

R. Hermann, A. Zöller, “Automatic Control of Optical Layer Fabrication Processesuo,” Proc. Soc. Photo-Opt. Instrum. Eng. 401, 83 (1983).

Appl. Opt.

Opt. Acta

H. A. Macleod, “Turning Value Monitoring of Narrow-Band All-Dielectric Thin-Film Optical Filter,” Opt. Acta 19, no. 1, 1 (1972).
[CrossRef]

H. A. Macleod, E. Pelletier, “Error Compensation Mechanism in Some Thin-Film Monitoring Systems,” Opt. Acta 24, 907 (1977).
[CrossRef]

A. J. Vermeulen, “Some Phenomena Connected with the Optical Monitoring of Thin-Film Deposition, and Their Application to Optical Coatings,” Opt. Acta 18, no. 7, 351 (1971).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng.

R. Hermann, A. Zöller, “Automatic Control of Optical Layer Fabrication Processesuo,” Proc. Soc. Photo-Opt. Instrum. Eng. 401, 83 (1983).

Thin Solid Films

P. Bousquet, E. Pelletier, “Optical Thin Film Monitoring —Recent Advances and Limitations,” Thin Solid Films 77, 165 (1981).
[CrossRef]

Vacuum

C. J. van der Laan, H. J. Frankena, “Monitoring of Optical Thin Films Using a Quartz Cristal Monitor,” Vacuum 27, 391 (1977).
[CrossRef]

Other

This publication is based partly on an oral presentation given at the conference of the Associazione Italiano Vuoto in Florence, 8 Oct. 1984.

H. A. Macleod, Thin Film Optical Filters (Hilger, London, 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Some monitoring signals (reflectance R or transmittance T as a function of time): (a) obtained during turning value monitoring; (b) obtained during monitoring of a nonquarterwave stack.

Fig. 2
Fig. 2

Sketch of the optical monitoring system.

Fig. 3
Fig. 3

Stages in optical monitoring.

Fig. 4
Fig. 4

(a) Monitoring signal; (b) quarterwave stack; (c) monitoring signal by deposition of the stack given in (b).

Fig. 5
Fig. 5

Meaning of symbols used by the calculation of Cp: ρ, hs, ds, ht, and dt correspond to the radius of the substrate orbit, the height of the substrate, the horizontal distance from the rotation axis of the substrate to the source, the height of the test glass, and the horizontal distance from test glass to source, respectively.

Fig. 6
Fig. 6

Interpretation of monitoring signals starting from characteristic reflectance values (Rs = 0.20, Rex1 = 0.50, Rex2 = 0.10, Rt = 0.40) and k ranging from 0 to 3.

Fig. 7
Fig. 7

Monitoring signals obtained by deposition of inhomogeneous λ/2 layers: solid lines, inhomogeneous λ/2 layers; broken lines, homogeneous λ/2 layers.

Fig. 8
Fig. 8

(a) Planned monitoring signal expressed in scale divisions (sd); (b) obtained signal. If extremum Rex2 deviates from the planned value, |RtRex2| is kept constant.

Fig. 9
Fig. 9

Refractive indices (S = 1.52, H = 2.25, and L = 1.46) and thicknesses (in nm) of the stacks used in the examples given. (a) and (b) V-coatings with R = 0 at λ = 633 nm; angle of incidence 0°. (a) First solution and (b) second solution. (c) Beam splitter with Rmean = 0.42 ± 0.03 at a λ interval of 400–700 nm; angle of incidence 45°.

Tables (2)

Tables Icon

Table I Example of Calculated Values Illustrating the Complicated Behavior of Signals as a Function of Wavelength

Tables Icon

Table II Figures of Examples Givena

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

C = ( thickness on test glass ) / ( thickness on substrate ) = t t
C p = h t 2 [ ( h s 2 + d s 2 + ρ 2 ) 2 4 d s 2 ρ 2 ] 3 / 2 h s 2 ( h s 2 + d s 2 + ρ 2 ) ( h t 2 + d t 2 ) 2 ;
C = C p r C p .
t = C t .
( B f C f ) = j = 1 f ( cos ( φ j ) i n j 1 sin ( φ j ) i n j sin ( φ j ) cos ( φ j ) ) ( 1 n s ) ,
φ j = 2 π n j t j / λ ,
γ f = C f / B f ,
R = r r * ,
r = n γ f n + γ f ,
γ f + 1 = cos ( φ f + 1 ) γ f + i n f + 1 sin ( φ f + 1 ) cos ( φ f + 1 ) + i n f + 1 1 sin ( φ f + 1 ) γ f .
r f = | r f | exp ( i δ f ) = n f + 1 γ f n f + 1 + γ f .
δ f 2 φ f + 1 , ext = m π , m = 0 , ± 1 , ± 2 , .
1 1 R tr = 1 1 R + R 0 1 R 0 ,
R 0 = ( 1 n t 1 + n t ) 2 ,
c 1 < 2 n t t t ,
S = | d R t d t | ,
1 1 R f + 1 = P + Q cos ( δ f 2 φ f + 1 ) ,
P = 1 2 ( 1 1 R e x 1 + 1 1 R e x 2 ) ,
Q = 1 2 ( 1 1 R e x 1 + 1 1 R e x 2 ) ,
δ f 2 φ f + 1 = arccos [ ( 1 1 R t P ) / Q ] .
R t = 1 1 P + Q cos ( δ f 2 φ f + 1 ) .
S = | 4 π C n f + 1 Q sin ( δ f 2 φ f + 1 ) λ [ P + Q cos ( δ f 2 φ f + 1 ) ] 2 | ,
S t r = 1 R 0 1 R 0 R S ,
Δ = R t R e x j R e x 1 R e x 2 , ( j = 1 or 2 ) ,
R = ( F / S ) R c .

Metrics