Abstract

On 30 June 1981 the wind fields around an Oklahoma severe thunderstorm were observed in detail using an airborne Doppler lidar operated by NASA. Despite uncertainties caused by inertial navigation errors and problems in sampling some of the aircraft attitude and motion parameters, reasonably clear pictures of the distributions of relative reflectivity, horizontal wind velocity, and velocity spectral width near the cloud base have been obtained. Aspects of the design and functioning of the NASA lidar relevant to the collection and analysis of the data are described.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Doviak, D. Zrnić, D. Sirmans, “Doppler Weather Radar,” Proc. IEEE 67, 1522 (1979).
    [CrossRef]
  2. R. Lhermitte, “Dual Doppler Radar Observations of Convective Storm Circulation,” in Proceedings, Fourteenth Conference on Radar Meteorology, Boston, pp. 153–156.
  3. P. Ray, R. Doviak, G. Walker, D. Sirmans, J. Carter, B. Bumgarner, “Dual Doppler Observations of a Tornadic Storm” J. Appl. Meteorol. 14, 1521 (1975).
    [CrossRef]
  4. R. Doviak, D. Zrnić, Doppler Radar and Weather Observations (Academic, New York, 1984), 458 pp.
  5. J. Bilbro, G. Fichtl, D. Fitzjarrald, M. Krause, R. Lee, “Airborne Doppler Lidar Wind Field Measurements,” Bull. Am. Meteorol. Soc. 65, 348 (1984).
    [CrossRef]
  6. R. Newell, S. Geotis, M. Stone, A. Fleisher, “How Round are Raindrops?” in Proceedings, Fifth Weather Radar Conference, Asbury Park, NJ (1955).
  7. R. W. Lee, K. A. Lee, “A Poly-pulse-pair Signal Processor for Coherent Doppler Lidar,” in Technical Digest, Topical Meeting on Coherent Laser Radar for Atmospheric Sensing (Optical Society of America, Washington, D.C., 1980), paper WA2.
  8. K. Miller, M. Rochwarger, “A Covariance Approach in Spectral Moment Estimation,” IEEE Trans. Inf. Theory IT-18, 588 (1972).
    [CrossRef]
  9. E. McCaul, “Observations of Oklahoma Convection Using Airborne Doppler Lidar and Ground-Based Doppler Radar,” M.S. Thesis, U. Oklahoma, School of Meteorology (1985), 320 pp.
  10. H. Bluestein, R. Doviak, M. Eilts, E. McCaul, R. Rabin, A. Sundara-Rajan, D. Zrnić, “Analysis of Airborne Doppler Lidar, Doppler Radar, and Tall Tower Measurements of Atmospheric Flows in Quiescent and Stormy Weather,” Final Report contract NAS8-34749, NASA Marshall Space Flight Center, AL (1985), 165 pp.
  11. J. Bilbro, “Engineering Documentation for the 1981 Severe Storms Doppler Lidar Flight Program,” NASA Marshall Space Flight Center, AL (1982), 176 pp.
  12. Ames Research Center, CV-990 Flight Summary Report, Severe Storms Program (Flights 1–9), 12 June–3 July 1981, NASA Ames Research Center, CA (1981).
    [PubMed]
  13. G. Cressman, “An Operational Objective Analysis System,” Mon. Weather Rev. 89, 367 (1959).
    [CrossRef]
  14. S. Murty, J. Bilbro, “Atmospheric Effects on C02 Laser Propagation,” NASA TP-1357, Marshall Space Flight Center, Huntsville, AL (1978), 98 pp.
  15. M. Eilts, R. Doviak, A. Sundara-Rajan, “Comparison of Winds, Waves and Turbulence as Observed by Airborne Lidar, Ground-Based Radars and Tall Tower,” Radio Sci. 19, 1511 (1984).
    [CrossRef]

1984 (2)

J. Bilbro, G. Fichtl, D. Fitzjarrald, M. Krause, R. Lee, “Airborne Doppler Lidar Wind Field Measurements,” Bull. Am. Meteorol. Soc. 65, 348 (1984).
[CrossRef]

M. Eilts, R. Doviak, A. Sundara-Rajan, “Comparison of Winds, Waves and Turbulence as Observed by Airborne Lidar, Ground-Based Radars and Tall Tower,” Radio Sci. 19, 1511 (1984).
[CrossRef]

1979 (1)

R. Doviak, D. Zrnić, D. Sirmans, “Doppler Weather Radar,” Proc. IEEE 67, 1522 (1979).
[CrossRef]

1975 (1)

P. Ray, R. Doviak, G. Walker, D. Sirmans, J. Carter, B. Bumgarner, “Dual Doppler Observations of a Tornadic Storm” J. Appl. Meteorol. 14, 1521 (1975).
[CrossRef]

1972 (1)

K. Miller, M. Rochwarger, “A Covariance Approach in Spectral Moment Estimation,” IEEE Trans. Inf. Theory IT-18, 588 (1972).
[CrossRef]

1959 (1)

G. Cressman, “An Operational Objective Analysis System,” Mon. Weather Rev. 89, 367 (1959).
[CrossRef]

Bilbro, J.

J. Bilbro, G. Fichtl, D. Fitzjarrald, M. Krause, R. Lee, “Airborne Doppler Lidar Wind Field Measurements,” Bull. Am. Meteorol. Soc. 65, 348 (1984).
[CrossRef]

S. Murty, J. Bilbro, “Atmospheric Effects on C02 Laser Propagation,” NASA TP-1357, Marshall Space Flight Center, Huntsville, AL (1978), 98 pp.

J. Bilbro, “Engineering Documentation for the 1981 Severe Storms Doppler Lidar Flight Program,” NASA Marshall Space Flight Center, AL (1982), 176 pp.

Bluestein, H.

H. Bluestein, R. Doviak, M. Eilts, E. McCaul, R. Rabin, A. Sundara-Rajan, D. Zrnić, “Analysis of Airborne Doppler Lidar, Doppler Radar, and Tall Tower Measurements of Atmospheric Flows in Quiescent and Stormy Weather,” Final Report contract NAS8-34749, NASA Marshall Space Flight Center, AL (1985), 165 pp.

Bumgarner, B.

P. Ray, R. Doviak, G. Walker, D. Sirmans, J. Carter, B. Bumgarner, “Dual Doppler Observations of a Tornadic Storm” J. Appl. Meteorol. 14, 1521 (1975).
[CrossRef]

Carter, J.

P. Ray, R. Doviak, G. Walker, D. Sirmans, J. Carter, B. Bumgarner, “Dual Doppler Observations of a Tornadic Storm” J. Appl. Meteorol. 14, 1521 (1975).
[CrossRef]

Cressman, G.

G. Cressman, “An Operational Objective Analysis System,” Mon. Weather Rev. 89, 367 (1959).
[CrossRef]

Doviak, R.

M. Eilts, R. Doviak, A. Sundara-Rajan, “Comparison of Winds, Waves and Turbulence as Observed by Airborne Lidar, Ground-Based Radars and Tall Tower,” Radio Sci. 19, 1511 (1984).
[CrossRef]

R. Doviak, D. Zrnić, D. Sirmans, “Doppler Weather Radar,” Proc. IEEE 67, 1522 (1979).
[CrossRef]

P. Ray, R. Doviak, G. Walker, D. Sirmans, J. Carter, B. Bumgarner, “Dual Doppler Observations of a Tornadic Storm” J. Appl. Meteorol. 14, 1521 (1975).
[CrossRef]

R. Doviak, D. Zrnić, Doppler Radar and Weather Observations (Academic, New York, 1984), 458 pp.

H. Bluestein, R. Doviak, M. Eilts, E. McCaul, R. Rabin, A. Sundara-Rajan, D. Zrnić, “Analysis of Airborne Doppler Lidar, Doppler Radar, and Tall Tower Measurements of Atmospheric Flows in Quiescent and Stormy Weather,” Final Report contract NAS8-34749, NASA Marshall Space Flight Center, AL (1985), 165 pp.

Eilts, M.

M. Eilts, R. Doviak, A. Sundara-Rajan, “Comparison of Winds, Waves and Turbulence as Observed by Airborne Lidar, Ground-Based Radars and Tall Tower,” Radio Sci. 19, 1511 (1984).
[CrossRef]

H. Bluestein, R. Doviak, M. Eilts, E. McCaul, R. Rabin, A. Sundara-Rajan, D. Zrnić, “Analysis of Airborne Doppler Lidar, Doppler Radar, and Tall Tower Measurements of Atmospheric Flows in Quiescent and Stormy Weather,” Final Report contract NAS8-34749, NASA Marshall Space Flight Center, AL (1985), 165 pp.

Fichtl, G.

J. Bilbro, G. Fichtl, D. Fitzjarrald, M. Krause, R. Lee, “Airborne Doppler Lidar Wind Field Measurements,” Bull. Am. Meteorol. Soc. 65, 348 (1984).
[CrossRef]

Fitzjarrald, D.

J. Bilbro, G. Fichtl, D. Fitzjarrald, M. Krause, R. Lee, “Airborne Doppler Lidar Wind Field Measurements,” Bull. Am. Meteorol. Soc. 65, 348 (1984).
[CrossRef]

Fleisher, A.

R. Newell, S. Geotis, M. Stone, A. Fleisher, “How Round are Raindrops?” in Proceedings, Fifth Weather Radar Conference, Asbury Park, NJ (1955).

Geotis, S.

R. Newell, S. Geotis, M. Stone, A. Fleisher, “How Round are Raindrops?” in Proceedings, Fifth Weather Radar Conference, Asbury Park, NJ (1955).

Krause, M.

J. Bilbro, G. Fichtl, D. Fitzjarrald, M. Krause, R. Lee, “Airborne Doppler Lidar Wind Field Measurements,” Bull. Am. Meteorol. Soc. 65, 348 (1984).
[CrossRef]

Lee, K. A.

R. W. Lee, K. A. Lee, “A Poly-pulse-pair Signal Processor for Coherent Doppler Lidar,” in Technical Digest, Topical Meeting on Coherent Laser Radar for Atmospheric Sensing (Optical Society of America, Washington, D.C., 1980), paper WA2.

Lee, R.

J. Bilbro, G. Fichtl, D. Fitzjarrald, M. Krause, R. Lee, “Airborne Doppler Lidar Wind Field Measurements,” Bull. Am. Meteorol. Soc. 65, 348 (1984).
[CrossRef]

Lee, R. W.

R. W. Lee, K. A. Lee, “A Poly-pulse-pair Signal Processor for Coherent Doppler Lidar,” in Technical Digest, Topical Meeting on Coherent Laser Radar for Atmospheric Sensing (Optical Society of America, Washington, D.C., 1980), paper WA2.

Lhermitte, R.

R. Lhermitte, “Dual Doppler Radar Observations of Convective Storm Circulation,” in Proceedings, Fourteenth Conference on Radar Meteorology, Boston, pp. 153–156.

McCaul, E.

H. Bluestein, R. Doviak, M. Eilts, E. McCaul, R. Rabin, A. Sundara-Rajan, D. Zrnić, “Analysis of Airborne Doppler Lidar, Doppler Radar, and Tall Tower Measurements of Atmospheric Flows in Quiescent and Stormy Weather,” Final Report contract NAS8-34749, NASA Marshall Space Flight Center, AL (1985), 165 pp.

E. McCaul, “Observations of Oklahoma Convection Using Airborne Doppler Lidar and Ground-Based Doppler Radar,” M.S. Thesis, U. Oklahoma, School of Meteorology (1985), 320 pp.

Miller, K.

K. Miller, M. Rochwarger, “A Covariance Approach in Spectral Moment Estimation,” IEEE Trans. Inf. Theory IT-18, 588 (1972).
[CrossRef]

Murty, S.

S. Murty, J. Bilbro, “Atmospheric Effects on C02 Laser Propagation,” NASA TP-1357, Marshall Space Flight Center, Huntsville, AL (1978), 98 pp.

Newell, R.

R. Newell, S. Geotis, M. Stone, A. Fleisher, “How Round are Raindrops?” in Proceedings, Fifth Weather Radar Conference, Asbury Park, NJ (1955).

Rabin, R.

H. Bluestein, R. Doviak, M. Eilts, E. McCaul, R. Rabin, A. Sundara-Rajan, D. Zrnić, “Analysis of Airborne Doppler Lidar, Doppler Radar, and Tall Tower Measurements of Atmospheric Flows in Quiescent and Stormy Weather,” Final Report contract NAS8-34749, NASA Marshall Space Flight Center, AL (1985), 165 pp.

Ray, P.

P. Ray, R. Doviak, G. Walker, D. Sirmans, J. Carter, B. Bumgarner, “Dual Doppler Observations of a Tornadic Storm” J. Appl. Meteorol. 14, 1521 (1975).
[CrossRef]

Rochwarger, M.

K. Miller, M. Rochwarger, “A Covariance Approach in Spectral Moment Estimation,” IEEE Trans. Inf. Theory IT-18, 588 (1972).
[CrossRef]

Sirmans, D.

R. Doviak, D. Zrnić, D. Sirmans, “Doppler Weather Radar,” Proc. IEEE 67, 1522 (1979).
[CrossRef]

P. Ray, R. Doviak, G. Walker, D. Sirmans, J. Carter, B. Bumgarner, “Dual Doppler Observations of a Tornadic Storm” J. Appl. Meteorol. 14, 1521 (1975).
[CrossRef]

Stone, M.

R. Newell, S. Geotis, M. Stone, A. Fleisher, “How Round are Raindrops?” in Proceedings, Fifth Weather Radar Conference, Asbury Park, NJ (1955).

Sundara-Rajan, A.

M. Eilts, R. Doviak, A. Sundara-Rajan, “Comparison of Winds, Waves and Turbulence as Observed by Airborne Lidar, Ground-Based Radars and Tall Tower,” Radio Sci. 19, 1511 (1984).
[CrossRef]

H. Bluestein, R. Doviak, M. Eilts, E. McCaul, R. Rabin, A. Sundara-Rajan, D. Zrnić, “Analysis of Airborne Doppler Lidar, Doppler Radar, and Tall Tower Measurements of Atmospheric Flows in Quiescent and Stormy Weather,” Final Report contract NAS8-34749, NASA Marshall Space Flight Center, AL (1985), 165 pp.

Walker, G.

P. Ray, R. Doviak, G. Walker, D. Sirmans, J. Carter, B. Bumgarner, “Dual Doppler Observations of a Tornadic Storm” J. Appl. Meteorol. 14, 1521 (1975).
[CrossRef]

Zrnic, D.

R. Doviak, D. Zrnić, D. Sirmans, “Doppler Weather Radar,” Proc. IEEE 67, 1522 (1979).
[CrossRef]

H. Bluestein, R. Doviak, M. Eilts, E. McCaul, R. Rabin, A. Sundara-Rajan, D. Zrnić, “Analysis of Airborne Doppler Lidar, Doppler Radar, and Tall Tower Measurements of Atmospheric Flows in Quiescent and Stormy Weather,” Final Report contract NAS8-34749, NASA Marshall Space Flight Center, AL (1985), 165 pp.

R. Doviak, D. Zrnić, Doppler Radar and Weather Observations (Academic, New York, 1984), 458 pp.

Bull. Am. Meteorol. Soc. (1)

J. Bilbro, G. Fichtl, D. Fitzjarrald, M. Krause, R. Lee, “Airborne Doppler Lidar Wind Field Measurements,” Bull. Am. Meteorol. Soc. 65, 348 (1984).
[CrossRef]

IEEE Trans. Inf. Theory (1)

K. Miller, M. Rochwarger, “A Covariance Approach in Spectral Moment Estimation,” IEEE Trans. Inf. Theory IT-18, 588 (1972).
[CrossRef]

J. Appl. Meteorol. (1)

P. Ray, R. Doviak, G. Walker, D. Sirmans, J. Carter, B. Bumgarner, “Dual Doppler Observations of a Tornadic Storm” J. Appl. Meteorol. 14, 1521 (1975).
[CrossRef]

Mon. Weather Rev. (1)

G. Cressman, “An Operational Objective Analysis System,” Mon. Weather Rev. 89, 367 (1959).
[CrossRef]

Proc. IEEE (1)

R. Doviak, D. Zrnić, D. Sirmans, “Doppler Weather Radar,” Proc. IEEE 67, 1522 (1979).
[CrossRef]

Radio Sci. (1)

M. Eilts, R. Doviak, A. Sundara-Rajan, “Comparison of Winds, Waves and Turbulence as Observed by Airborne Lidar, Ground-Based Radars and Tall Tower,” Radio Sci. 19, 1511 (1984).
[CrossRef]

Other (9)

S. Murty, J. Bilbro, “Atmospheric Effects on C02 Laser Propagation,” NASA TP-1357, Marshall Space Flight Center, Huntsville, AL (1978), 98 pp.

R. Newell, S. Geotis, M. Stone, A. Fleisher, “How Round are Raindrops?” in Proceedings, Fifth Weather Radar Conference, Asbury Park, NJ (1955).

R. W. Lee, K. A. Lee, “A Poly-pulse-pair Signal Processor for Coherent Doppler Lidar,” in Technical Digest, Topical Meeting on Coherent Laser Radar for Atmospheric Sensing (Optical Society of America, Washington, D.C., 1980), paper WA2.

R. Lhermitte, “Dual Doppler Radar Observations of Convective Storm Circulation,” in Proceedings, Fourteenth Conference on Radar Meteorology, Boston, pp. 153–156.

R. Doviak, D. Zrnić, Doppler Radar and Weather Observations (Academic, New York, 1984), 458 pp.

E. McCaul, “Observations of Oklahoma Convection Using Airborne Doppler Lidar and Ground-Based Doppler Radar,” M.S. Thesis, U. Oklahoma, School of Meteorology (1985), 320 pp.

H. Bluestein, R. Doviak, M. Eilts, E. McCaul, R. Rabin, A. Sundara-Rajan, D. Zrnić, “Analysis of Airborne Doppler Lidar, Doppler Radar, and Tall Tower Measurements of Atmospheric Flows in Quiescent and Stormy Weather,” Final Report contract NAS8-34749, NASA Marshall Space Flight Center, AL (1985), 165 pp.

J. Bilbro, “Engineering Documentation for the 1981 Severe Storms Doppler Lidar Flight Program,” NASA Marshall Space Flight Center, AL (1982), 176 pp.

Ames Research Center, CV-990 Flight Summary Report, Severe Storms Program (Flights 1–9), 12 June–3 July 1981, NASA Ames Research Center, CA (1981).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Block diagram of main components of NASA airborne Doppler lidar system.

Fig. 2
Fig. 2

Transmitted pulses (a) and the interference pattern (b) at the input to the optical detector assuming the airspeed is zero, aerosols are uniformly distributed, and all move at a radial velocity of 10 m s−1. (c) The inphase (or quadrature phase) signal input to the poly-pulse-pair processor's analog-to-digital converter. The bold vertical lines indicate the spacings of signal samples digitized by the converter.

Fig. 3
Fig. 3

Various velocity components used to derive the horizontal wind vector from lidar measurements. This schematic assumes the measurement of wind is made at r = 0 (at the aircraft) where the sum of aircraft ground velocity and wind vectors equals the true airspeed vector.

Fig. 4
Fig. 4

Typical arrangement of data samples in space. Raw data values (moments M0, M1, M2) for each resolution volume are the result of poly-pulse-pair processing echoes from 50 transmitted pulses that comprise each data frame.

Fig. 5
Fig. 5

Construction of total wind vector from fore, aft radial velocities. Intersection of perpendiculars from the tips of the components defines the total vector.

Fig. 6
Fig. 6

Sample field of raw lidar radial velocity data and synthesized wind vectors. Also shown are the successive aircraft positions and the Cressman radius used in the analysis.

Fig. 7
Fig. 7

Typical raw intensity profile for a lidar frame containing a cloud strike. Note decrease in intensity with range until cloud strike at ∼4 km and noise fluctuations beyond 5 km.

Fig. 8
Fig. 8

Relative reflectivity profile for data in Fig. 7. Note the steadiness of reflectivity with range until cloud strike near 4 km. Noise beyond cloud strike is set to 0 dB.

Fig. 9
Fig. 9

Photograph, looking south, ∼2027 GMT (1427 CST), during run 3. The line of sight is not coincident with the lidar line of sight; the CV-990 aircraft was moving toward the right. Photo courtesy of Dan Fitzjarrald.

Fig. 10
Fig. 10

Vector plot of lidar-derived winds from ∼2027 GMT. Note the sinuous form of the leading edge of outflow and increased winds behind the gust front.

Fig. 11
Fig. 11

Contour plot of relative reflectivity from data taken ∼2027 GMT. Note that the maximum intensities occur at and just behind the gust front.

Fig. 12
Fig. 12

Contour plot of spectral widths of winds shown in Fig. 10. Note that the peak spectral widths occur near the position of the gust front.

Tables (1)

Tables Icon

Table I Operating Characteristics of NASA Doppler Lidar

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

f d = 2 V r / λ ,
d r = c τ / 2 ,
f d ( 0 ) = 2 ( REF V r ) / λ
V r , a = Δ V r , a + ( REF V r V g , a ) ,
V r , f = Δ V r , f + ( REF V r V g , f ) ,
θ = arctan ( V r , f cos θ a V r , a cos θ f V r , a sin θ f V r , f sin θ a ) ,
V = V r , a / cos ( θ θ a ) = V r , f / cos ( θ θ f ) ,
a 0 ( i , j ) = b a 1 ( i , j ) { ( r 2 + R 2 ) } exp [ 2 k ( r ) d r ] ,
σ υ = ( M ̂ 2 σ υ r ) 2 1 / 2 ,

Metrics