Abstract

We have designed and tested a compact injection seeding system consisting of a diode-laser-pumped Nd:YAG master oscillator and a permanent-magnet Faraday isolator. With active resonator frequency stabilization, this system permits highly reliable single-axial-mode operation of a Q-switched Nd:YAG laser over a period of hours. The system is capable of injection seeding both stable and unstable resonator designs and is suitable for injection seeding commercial lasers with only minor modifications.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. A. Rahn, R. L. Farrow, R. P. Lucht, “Effects of Laser Field Statistics on Coherent Anti-Stokes Raman Spectroscopy,” Opt. Lett. 9, 223 (1984).
    [CrossRef] [PubMed]
  2. R. L. Farrow, L. A. Rahn, “Interpreting Coherent Anti-Stokes Raman Spectra Measured with Multimode Nd:YAG Pump Lasers,” J. Opt. Soc. Am. B 2, 903 (1985).
    [CrossRef]
  3. Y. K. Park, G. Giuliani, R. L. Byer, “Stable Single-Axial-Mode Operation of an Unstable-Resonator Nd:YAG Oscillator by Injection Locking,” Opt. Lett. 5, 96 (1980).
    [CrossRef] [PubMed]
  4. Y. K. Park, G. Guilliani, R. L. Byer, “Single Axial Mode Operation of a Q-Switched Nd:YAG Oscillator by Injection Seeding,” IEEE J. Quantum Electron. QE-20, 117 (1984).
    [CrossRef]
  5. Y. K. Park, “Frequency and Mode Control of Q-Switched Neodymium:YAG Lasers,” Ph.D. Thesis, Stanford U. (1981).
  6. R. E. Teets, “Feedback to Maintain Injection Locking of Nd:YAG Lasers,” IEEE J. Quantum Electron. QE-20, 326 (1984).
    [CrossRef]
  7. L. A. Rahn, “Feedback Stabilization of an Injection-Seeded Nd:YAG Laser,” Appl. Opt. 24, 940 (1985).
    [CrossRef] [PubMed]
  8. Y. K. Park, R. L. Byer, “Electronic Linewidth Narrowing Method for Single Axial Mode Operation of Q-Switched Nd:YAG Lasers,” Opt. Commun. 37, 411 (1981).
    [CrossRef]
  9. A. J. Berry, D. C. Hanna, C. G. Sawyers, “High Power, Single Frequency Operation of a Q-Switched TEM00 Mode Nd:YAG Laser,” Opt. Commun. 40, 54 (1981).
    [CrossRef]
  10. A. Owyoung, E. D. Jones, “Control of Temporal and Spectral Jitter in Single Mode Pulsed Nd:YAG Oscillators,” Rev. Sci. Instrum. 49, 266 (1978).
    [CrossRef] [PubMed]
  11. B. Zhou, T. J. Kane, G. J. Dixon, R. L. Byer, “Efficient, Frequency-Stable Laser-Diode-Pumped Nd:YAG Laser,” Opt. Lett. 10, 62 (1985).
    [CrossRef] [PubMed]
  12. Certain commercial equipment, instruments, or materials are identified in this paper to specify adequately the injection seeding system. Such identification does not imply recommendation or endorsement by Sandia National Laboratories, nor does it imply that the materials or equipment identified are the best available for the purpose.
  13. A. Owyoung, G. R. Hadley, P. Esherick, R. L. Schmitt, L. A. Rahn, “Gain Switching of a Monolithic Single-Frequency Laser-Diode-Excited Nd:YAG Laser,” Opt. Lett. 10, 484 (1985).
    [CrossRef] [PubMed]
  14. L. G. DeShazer, E. A. Maunders, “Optical Isolator for Near Infrared,” Rev. Sci. Instrum. 38, 248 (1967).
    [CrossRef]
  15. C. F. Padula, C. G. Young, “Optical Isolators for High-Power 1.06 Micron Glass Laser Systems,” IEEE J. Quantum Electron. QE-3, 493 (1967).
    [CrossRef]
  16. V. Evtuhov, A. E. Siegman, “A Twisted-Mode Technique for Obtaining Axially Uniform Energy Density in a Laser Cavity,” Appl. Opt. 4, 142 (1965).
    [CrossRef]
  17. R. L. Schmitt, L. A. Rahn, “Diode-Laser-Pumped Nd:YAG Laser Injection Seeding System,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1985), paper TUL4.
  18. P. Esherick, A. Owyoung, Sandia National Laboratories; private communication.

1985 (4)

1984 (3)

L. A. Rahn, R. L. Farrow, R. P. Lucht, “Effects of Laser Field Statistics on Coherent Anti-Stokes Raman Spectroscopy,” Opt. Lett. 9, 223 (1984).
[CrossRef] [PubMed]

Y. K. Park, G. Guilliani, R. L. Byer, “Single Axial Mode Operation of a Q-Switched Nd:YAG Oscillator by Injection Seeding,” IEEE J. Quantum Electron. QE-20, 117 (1984).
[CrossRef]

R. E. Teets, “Feedback to Maintain Injection Locking of Nd:YAG Lasers,” IEEE J. Quantum Electron. QE-20, 326 (1984).
[CrossRef]

1981 (2)

Y. K. Park, R. L. Byer, “Electronic Linewidth Narrowing Method for Single Axial Mode Operation of Q-Switched Nd:YAG Lasers,” Opt. Commun. 37, 411 (1981).
[CrossRef]

A. J. Berry, D. C. Hanna, C. G. Sawyers, “High Power, Single Frequency Operation of a Q-Switched TEM00 Mode Nd:YAG Laser,” Opt. Commun. 40, 54 (1981).
[CrossRef]

1980 (1)

1978 (1)

A. Owyoung, E. D. Jones, “Control of Temporal and Spectral Jitter in Single Mode Pulsed Nd:YAG Oscillators,” Rev. Sci. Instrum. 49, 266 (1978).
[CrossRef] [PubMed]

1967 (2)

L. G. DeShazer, E. A. Maunders, “Optical Isolator for Near Infrared,” Rev. Sci. Instrum. 38, 248 (1967).
[CrossRef]

C. F. Padula, C. G. Young, “Optical Isolators for High-Power 1.06 Micron Glass Laser Systems,” IEEE J. Quantum Electron. QE-3, 493 (1967).
[CrossRef]

1965 (1)

Berry, A. J.

A. J. Berry, D. C. Hanna, C. G. Sawyers, “High Power, Single Frequency Operation of a Q-Switched TEM00 Mode Nd:YAG Laser,” Opt. Commun. 40, 54 (1981).
[CrossRef]

Byer, R. L.

B. Zhou, T. J. Kane, G. J. Dixon, R. L. Byer, “Efficient, Frequency-Stable Laser-Diode-Pumped Nd:YAG Laser,” Opt. Lett. 10, 62 (1985).
[CrossRef] [PubMed]

Y. K. Park, G. Guilliani, R. L. Byer, “Single Axial Mode Operation of a Q-Switched Nd:YAG Oscillator by Injection Seeding,” IEEE J. Quantum Electron. QE-20, 117 (1984).
[CrossRef]

Y. K. Park, R. L. Byer, “Electronic Linewidth Narrowing Method for Single Axial Mode Operation of Q-Switched Nd:YAG Lasers,” Opt. Commun. 37, 411 (1981).
[CrossRef]

Y. K. Park, G. Giuliani, R. L. Byer, “Stable Single-Axial-Mode Operation of an Unstable-Resonator Nd:YAG Oscillator by Injection Locking,” Opt. Lett. 5, 96 (1980).
[CrossRef] [PubMed]

DeShazer, L. G.

L. G. DeShazer, E. A. Maunders, “Optical Isolator for Near Infrared,” Rev. Sci. Instrum. 38, 248 (1967).
[CrossRef]

Dixon, G. J.

Esherick, P.

Evtuhov, V.

Farrow, R. L.

Giuliani, G.

Guilliani, G.

Y. K. Park, G. Guilliani, R. L. Byer, “Single Axial Mode Operation of a Q-Switched Nd:YAG Oscillator by Injection Seeding,” IEEE J. Quantum Electron. QE-20, 117 (1984).
[CrossRef]

Hadley, G. R.

Hanna, D. C.

A. J. Berry, D. C. Hanna, C. G. Sawyers, “High Power, Single Frequency Operation of a Q-Switched TEM00 Mode Nd:YAG Laser,” Opt. Commun. 40, 54 (1981).
[CrossRef]

Jones, E. D.

A. Owyoung, E. D. Jones, “Control of Temporal and Spectral Jitter in Single Mode Pulsed Nd:YAG Oscillators,” Rev. Sci. Instrum. 49, 266 (1978).
[CrossRef] [PubMed]

Kane, T. J.

Lucht, R. P.

Maunders, E. A.

L. G. DeShazer, E. A. Maunders, “Optical Isolator for Near Infrared,” Rev. Sci. Instrum. 38, 248 (1967).
[CrossRef]

Owyoung, A.

A. Owyoung, G. R. Hadley, P. Esherick, R. L. Schmitt, L. A. Rahn, “Gain Switching of a Monolithic Single-Frequency Laser-Diode-Excited Nd:YAG Laser,” Opt. Lett. 10, 484 (1985).
[CrossRef] [PubMed]

A. Owyoung, E. D. Jones, “Control of Temporal and Spectral Jitter in Single Mode Pulsed Nd:YAG Oscillators,” Rev. Sci. Instrum. 49, 266 (1978).
[CrossRef] [PubMed]

P. Esherick, A. Owyoung, Sandia National Laboratories; private communication.

Padula, C. F.

C. F. Padula, C. G. Young, “Optical Isolators for High-Power 1.06 Micron Glass Laser Systems,” IEEE J. Quantum Electron. QE-3, 493 (1967).
[CrossRef]

Park, Y. K.

Y. K. Park, G. Guilliani, R. L. Byer, “Single Axial Mode Operation of a Q-Switched Nd:YAG Oscillator by Injection Seeding,” IEEE J. Quantum Electron. QE-20, 117 (1984).
[CrossRef]

Y. K. Park, R. L. Byer, “Electronic Linewidth Narrowing Method for Single Axial Mode Operation of Q-Switched Nd:YAG Lasers,” Opt. Commun. 37, 411 (1981).
[CrossRef]

Y. K. Park, G. Giuliani, R. L. Byer, “Stable Single-Axial-Mode Operation of an Unstable-Resonator Nd:YAG Oscillator by Injection Locking,” Opt. Lett. 5, 96 (1980).
[CrossRef] [PubMed]

Y. K. Park, “Frequency and Mode Control of Q-Switched Neodymium:YAG Lasers,” Ph.D. Thesis, Stanford U. (1981).

Rahn, L. A.

Sawyers, C. G.

A. J. Berry, D. C. Hanna, C. G. Sawyers, “High Power, Single Frequency Operation of a Q-Switched TEM00 Mode Nd:YAG Laser,” Opt. Commun. 40, 54 (1981).
[CrossRef]

Schmitt, R. L.

A. Owyoung, G. R. Hadley, P. Esherick, R. L. Schmitt, L. A. Rahn, “Gain Switching of a Monolithic Single-Frequency Laser-Diode-Excited Nd:YAG Laser,” Opt. Lett. 10, 484 (1985).
[CrossRef] [PubMed]

R. L. Schmitt, L. A. Rahn, “Diode-Laser-Pumped Nd:YAG Laser Injection Seeding System,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1985), paper TUL4.

Siegman, A. E.

Teets, R. E.

R. E. Teets, “Feedback to Maintain Injection Locking of Nd:YAG Lasers,” IEEE J. Quantum Electron. QE-20, 326 (1984).
[CrossRef]

Young, C. G.

C. F. Padula, C. G. Young, “Optical Isolators for High-Power 1.06 Micron Glass Laser Systems,” IEEE J. Quantum Electron. QE-3, 493 (1967).
[CrossRef]

Zhou, B.

Appl. Opt. (2)

IEEE J. Quantum Electron. (3)

R. E. Teets, “Feedback to Maintain Injection Locking of Nd:YAG Lasers,” IEEE J. Quantum Electron. QE-20, 326 (1984).
[CrossRef]

Y. K. Park, G. Guilliani, R. L. Byer, “Single Axial Mode Operation of a Q-Switched Nd:YAG Oscillator by Injection Seeding,” IEEE J. Quantum Electron. QE-20, 117 (1984).
[CrossRef]

C. F. Padula, C. G. Young, “Optical Isolators for High-Power 1.06 Micron Glass Laser Systems,” IEEE J. Quantum Electron. QE-3, 493 (1967).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

Y. K. Park, R. L. Byer, “Electronic Linewidth Narrowing Method for Single Axial Mode Operation of Q-Switched Nd:YAG Lasers,” Opt. Commun. 37, 411 (1981).
[CrossRef]

A. J. Berry, D. C. Hanna, C. G. Sawyers, “High Power, Single Frequency Operation of a Q-Switched TEM00 Mode Nd:YAG Laser,” Opt. Commun. 40, 54 (1981).
[CrossRef]

Opt. Lett. (4)

Rev. Sci. Instrum. (2)

L. G. DeShazer, E. A. Maunders, “Optical Isolator for Near Infrared,” Rev. Sci. Instrum. 38, 248 (1967).
[CrossRef]

A. Owyoung, E. D. Jones, “Control of Temporal and Spectral Jitter in Single Mode Pulsed Nd:YAG Oscillators,” Rev. Sci. Instrum. 49, 266 (1978).
[CrossRef] [PubMed]

Other (4)

Certain commercial equipment, instruments, or materials are identified in this paper to specify adequately the injection seeding system. Such identification does not imply recommendation or endorsement by Sandia National Laboratories, nor does it imply that the materials or equipment identified are the best available for the purpose.

R. L. Schmitt, L. A. Rahn, “Diode-Laser-Pumped Nd:YAG Laser Injection Seeding System,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1985), paper TUL4.

P. Esherick, A. Owyoung, Sandia National Laboratories; private communication.

Y. K. Park, “Frequency and Mode Control of Q-Switched Neodymium:YAG Lasers,” Ph.D. Thesis, Stanford U. (1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the injection seeding system: LD, laser diode; GRIN, gradient index lens; L, lens; P, polarizer; FR, Faraday rotator; PZT, piezoelectric mirror translator; E, etalon; QS, Q-switch; A, aperture; λ/4 and λ/2, wave plates; M, mirror.

Fig. 2
Fig. 2

Cutaway view of the permanent-magnet Faraday rotator showing the placement of the Hoya FR-5 glass (shaded cylinders) inside the axially magnetized samarium-cobalt magnet stack.

Fig. 3
Fig. 3

Theoretical magnetic induction along the Faraday isolator axis. The horizontal lines drawn at zero magnetic induction indicate the position of the glass cylinders.

Fig. 4
Fig. 4

Oscilloscope traces of the injection seeded Nd:YAG oscillator for various slave cavity lengths corresponding to master laser frequency: (a) nearly resonant wtih a slave cavity mode; (b) detuned from a slave cavity mode by 15–20% of slave cavity FSR; and (c) midway between two slave cavity modes. All traces taken at 20 ns/div, triggered from the Q-switch.

Fig. 5
Fig. 5

Confocal interferometer scan of 532-nm output of injection seeded Nd:YAG laser. The interferometer FSR is 300 MHz, and the finesse at 532 nm is ∼20. The two spectra represent odd and even data points collected at the 20-Hz repetition rate of the laser. The frequency offset between the spectra shows the magnitude of the cavity length dither used by the frequency stabilization control loop.

Metrics