Abstract

We report operation of the first high average power Nd: glass active-mirror amplifier, a scalable laser device that may be used to configure solid-state laser systems with high average power output into the kilowatt regime. An extractable average power of over 120 W was achieved at the device laser material fracture limit and at a repetition rate of 5 Hz.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. S. Martin, T. P. Chernoch, “Total Internal Reflection Laser Device,” General Electric Co., U.S. Patent3,633,126 (4Jan.1972).
  2. D. C. Brown, K. K. Lee, “Scaling Laws for Ordinary and Sandwich Slab-Laser Devices,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1984), paper WE4;and paper submitted to Appl. Opt.
  3. D. C. Brown, K. K. Lee, K. J. Kuhn, R. L. Byer, “Amplified Spontaneous Emission in Slab Lasers,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1984), paper WE5:and paper submitted to Appl. Opt.
  4. J. A. Abate et al., “Active Mirror: a Large-Aperture Medium-Repetition Rate Nd:Glass Amplifier,” Appl. Opt. 20, 351 (1981).
    [Crossref] [PubMed]
  5. D. C. Brown, J. H. Kelly, J. A. Abate, “Active-Mirror Amplifiers: Progress and Prospects,” IEEE J. Quantum Electron., QE-17, 1755 (1981).
    [Crossref]
  6. P. R. Manzo, H. R. Verdun, E. A. Philips, “A Thermo-Optic Analysis of the Active-Mirror Amplifier,” Science Applications, Inc. report 168-201-014, DOE contract ED 78-C-01-6456 (1980).
  7. W. S. Martin, Face Pumped Laser, General Electric Co., Research & Development Report 68-C-28568-C-285 (1968).
  8. J. Soures, J. Hoose, “Sandwich Active-Mirror Amplifier,” U. Rochester, U.S. Patent3,986,130 (9Oct.1974).
  9. D. C. Brown, High Peak Power Nd:Glass Laser Systems (Springer-Verlag, New York, 1981).
  10. J. H. Kelly, D. C. Brown, J. A. Abate, K. Teegarden, “Dynamic Pumping Model for Amplifier Performance Predictions,” Appl. Opt., 20, 1595 (1981).
    [Crossref] [PubMed]
  11. J. M. Eggleston, “Experimental and Theoretical Studies of the Slab Geometry Laser,” Ph.D. Thesis, Department of Applied Physics, Stanford U. (1983).
  12. R. F. Bourque, “Title not available,” General Atomic Co., Report GA-A15386, prepared for Lawrence Livermore National Laboratory, UCRL 15047 (1979).
  13. J. L. Emmett, W. F. Krupke, W. R. Scoy, “Prospects for High Average Power Solid State Lasers,” Lawrence Livermore National Laboratory, Report UCRL-53571 (1984).
  14. D. C. Brown, S. D. Jacobs, N. Nee, “Parasitic Oscillations, Absorption, Stored Energy Density and Heat Density in Active-Mirror and Disk Amplifiers,” Appl. Opt. 17, 211 (1978).
    [Crossref] [PubMed]

1981 (3)

1978 (1)

Abate, J. A.

Bourque, R. F.

R. F. Bourque, “Title not available,” General Atomic Co., Report GA-A15386, prepared for Lawrence Livermore National Laboratory, UCRL 15047 (1979).

Brown, D. C.

J. H. Kelly, D. C. Brown, J. A. Abate, K. Teegarden, “Dynamic Pumping Model for Amplifier Performance Predictions,” Appl. Opt., 20, 1595 (1981).
[Crossref] [PubMed]

D. C. Brown, J. H. Kelly, J. A. Abate, “Active-Mirror Amplifiers: Progress and Prospects,” IEEE J. Quantum Electron., QE-17, 1755 (1981).
[Crossref]

D. C. Brown, S. D. Jacobs, N. Nee, “Parasitic Oscillations, Absorption, Stored Energy Density and Heat Density in Active-Mirror and Disk Amplifiers,” Appl. Opt. 17, 211 (1978).
[Crossref] [PubMed]

D. C. Brown, High Peak Power Nd:Glass Laser Systems (Springer-Verlag, New York, 1981).

D. C. Brown, K. K. Lee, “Scaling Laws for Ordinary and Sandwich Slab-Laser Devices,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1984), paper WE4;and paper submitted to Appl. Opt.

D. C. Brown, K. K. Lee, K. J. Kuhn, R. L. Byer, “Amplified Spontaneous Emission in Slab Lasers,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1984), paper WE5:and paper submitted to Appl. Opt.

Byer, R. L.

D. C. Brown, K. K. Lee, K. J. Kuhn, R. L. Byer, “Amplified Spontaneous Emission in Slab Lasers,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1984), paper WE5:and paper submitted to Appl. Opt.

Chernoch, T. P.

W. S. Martin, T. P. Chernoch, “Total Internal Reflection Laser Device,” General Electric Co., U.S. Patent3,633,126 (4Jan.1972).

Eggleston, J. M.

J. M. Eggleston, “Experimental and Theoretical Studies of the Slab Geometry Laser,” Ph.D. Thesis, Department of Applied Physics, Stanford U. (1983).

Emmett, J. L.

J. L. Emmett, W. F. Krupke, W. R. Scoy, “Prospects for High Average Power Solid State Lasers,” Lawrence Livermore National Laboratory, Report UCRL-53571 (1984).

Hoose, J.

J. Soures, J. Hoose, “Sandwich Active-Mirror Amplifier,” U. Rochester, U.S. Patent3,986,130 (9Oct.1974).

Jacobs, S. D.

Kelly, J. H.

J. H. Kelly, D. C. Brown, J. A. Abate, K. Teegarden, “Dynamic Pumping Model for Amplifier Performance Predictions,” Appl. Opt., 20, 1595 (1981).
[Crossref] [PubMed]

D. C. Brown, J. H. Kelly, J. A. Abate, “Active-Mirror Amplifiers: Progress and Prospects,” IEEE J. Quantum Electron., QE-17, 1755 (1981).
[Crossref]

Krupke, W. F.

J. L. Emmett, W. F. Krupke, W. R. Scoy, “Prospects for High Average Power Solid State Lasers,” Lawrence Livermore National Laboratory, Report UCRL-53571 (1984).

Kuhn, K. J.

D. C. Brown, K. K. Lee, K. J. Kuhn, R. L. Byer, “Amplified Spontaneous Emission in Slab Lasers,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1984), paper WE5:and paper submitted to Appl. Opt.

Lee, K. K.

D. C. Brown, K. K. Lee, K. J. Kuhn, R. L. Byer, “Amplified Spontaneous Emission in Slab Lasers,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1984), paper WE5:and paper submitted to Appl. Opt.

D. C. Brown, K. K. Lee, “Scaling Laws for Ordinary and Sandwich Slab-Laser Devices,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1984), paper WE4;and paper submitted to Appl. Opt.

Manzo, P. R.

P. R. Manzo, H. R. Verdun, E. A. Philips, “A Thermo-Optic Analysis of the Active-Mirror Amplifier,” Science Applications, Inc. report 168-201-014, DOE contract ED 78-C-01-6456 (1980).

Martin, W. S.

W. S. Martin, Face Pumped Laser, General Electric Co., Research & Development Report 68-C-28568-C-285 (1968).

W. S. Martin, T. P. Chernoch, “Total Internal Reflection Laser Device,” General Electric Co., U.S. Patent3,633,126 (4Jan.1972).

Nee, N.

Philips, E. A.

P. R. Manzo, H. R. Verdun, E. A. Philips, “A Thermo-Optic Analysis of the Active-Mirror Amplifier,” Science Applications, Inc. report 168-201-014, DOE contract ED 78-C-01-6456 (1980).

Scoy, W. R.

J. L. Emmett, W. F. Krupke, W. R. Scoy, “Prospects for High Average Power Solid State Lasers,” Lawrence Livermore National Laboratory, Report UCRL-53571 (1984).

Soures, J.

J. Soures, J. Hoose, “Sandwich Active-Mirror Amplifier,” U. Rochester, U.S. Patent3,986,130 (9Oct.1974).

Teegarden, K.

Verdun, H. R.

P. R. Manzo, H. R. Verdun, E. A. Philips, “A Thermo-Optic Analysis of the Active-Mirror Amplifier,” Science Applications, Inc. report 168-201-014, DOE contract ED 78-C-01-6456 (1980).

Appl. Opt. (3)

IEEE J. Quantum Electron. (1)

D. C. Brown, J. H. Kelly, J. A. Abate, “Active-Mirror Amplifiers: Progress and Prospects,” IEEE J. Quantum Electron., QE-17, 1755 (1981).
[Crossref]

Other (10)

P. R. Manzo, H. R. Verdun, E. A. Philips, “A Thermo-Optic Analysis of the Active-Mirror Amplifier,” Science Applications, Inc. report 168-201-014, DOE contract ED 78-C-01-6456 (1980).

W. S. Martin, Face Pumped Laser, General Electric Co., Research & Development Report 68-C-28568-C-285 (1968).

J. Soures, J. Hoose, “Sandwich Active-Mirror Amplifier,” U. Rochester, U.S. Patent3,986,130 (9Oct.1974).

D. C. Brown, High Peak Power Nd:Glass Laser Systems (Springer-Verlag, New York, 1981).

J. M. Eggleston, “Experimental and Theoretical Studies of the Slab Geometry Laser,” Ph.D. Thesis, Department of Applied Physics, Stanford U. (1983).

R. F. Bourque, “Title not available,” General Atomic Co., Report GA-A15386, prepared for Lawrence Livermore National Laboratory, UCRL 15047 (1979).

J. L. Emmett, W. F. Krupke, W. R. Scoy, “Prospects for High Average Power Solid State Lasers,” Lawrence Livermore National Laboratory, Report UCRL-53571 (1984).

W. S. Martin, T. P. Chernoch, “Total Internal Reflection Laser Device,” General Electric Co., U.S. Patent3,633,126 (4Jan.1972).

D. C. Brown, K. K. Lee, “Scaling Laws for Ordinary and Sandwich Slab-Laser Devices,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1984), paper WE4;and paper submitted to Appl. Opt.

D. C. Brown, K. K. Lee, K. J. Kuhn, R. L. Byer, “Amplified Spontaneous Emission in Slab Lasers,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1984), paper WE5:and paper submitted to Appl. Opt.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Key features of active-mirror amplifiers.

Fig. 2
Fig. 2

Continuous wave temperature profiles in active-mirror amplifier with unequal boundary conditions.

Fig. 3
Fig. 3

Continuous wave faired temperature profiles in active-mirror amplifier with unequal boundary conditions.

Fig. 4
Fig. 4

σxx stress component distribution in active-mirror amplifier with unequal boundary conditions.

Fig. 5
Fig. 5

Continuous wave temperature profiles in active-mirror amplifier with equal boundary conditions.

Fig. 6
Fig. 6

σxx stress component distribution in active-mirror amplifier with equal boundary conditions.

Fig. 7
Fig. 7

Ratio of maximum stress in an active-mirror amplifier due to nonuniform and uniform pumping for equal total input.

Fig. 8
Fig. 8

Design of high average power active-mirror amplifier.

Fig. 9
Fig. 9

Pulse forming network.

Fig. 10
Fig. 10

Apparatus for measuring small signal gain.

Fig. 11
Fig. 11

Total stored energy as a function of bank energy for a 2-wt. % disk.

Fig. 12
Fig. 12

Total stored energy as a function of bank energy for a 6-wt. % disk.

Fig. 13
Fig. 13

Extractable average power as a function of bank average power for a constant repetition rate of 5 Hz.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

α z z = σ x x = E α ( 1 ν ) T ( y ) = k T ( y ) M s ,
T ( y ) = T ( y ) T a υ .
M s = k ( 1 ν ) α E
d 2 T d y 2 = Q ( y ) k ,
Q ( y ) = Q 0 exp ( α y ) .
T y | 0 = λ 1 k [ T c ( 1 ) T 0 ] ,
T y | t = λ 2 k [ T c ( 2 ) T 0 ] .
T ( y ) = T 0 + y ( T y | 0 ) Q 0 y k α + Q 0 k α 2 [ 1 exp ( α y ) ] .
T y | 0 = Q 0 λ 2 t k 2 α + Q 0 k α ( 1 λ 2 k α ) [ 1 exp ( α t ) ] ( 1 + λ 2 t k λ 2 λ 1 ) ,
T 0 = T c ( 1 ) + k λ 1 ( T y | 0 ) .
σ M = 2 σ = ( y = 0 ) = k T ( y = 0 ) M s .
Q 0 = χ E s ν r ,
γ = 12 u 2 [ 1 ( u 1 exp ( u ) ) u 2 ( β 1 ) ] ,
ln G 0 = 2 α 0 E s t / cos [ sin 1 ( 1 n sin θ i ) ] ,
P a υ M = 6 π 2 ( M s σ M χ ) ( D 2 t )
σ M = 2 Q 0 t 2 12 M s
Δ T = Q t m c p ,

Metrics