Abstract

The absorption coefficient and index of refraction have been measured in the 2–30-cm−1 frequency range for the following materials at a temperature near 5 K: Pyrex, Fluorogold, Eccosorb CR110, Stycast 2850 FT, Plexiglas, TPX, Neoprene, Teflon, and Nylon. For some of these materials room temperature measurements were also made.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. P. Gush, “Rocket Measurement of the Cosmic Background Submillimeter Spectrum,” in Proceedings, 1983 Space Helium Dewar Conference, J. B. Hendricks, G. R. Karr, Ed. (U. Alabama in Huntsville, 1984), p. 99.
  2. P. M. Downey et al., “Monolithic Silicon Bolometers,” Appl. Opt. 23, 910 (1984).
    [CrossRef] [PubMed]
  3. E. V. Loewenstein, D. R. Smith, “Optical Constants of Far IR Materials. 1: Analysis of Channeled Spectra and Application to Mylar,” Appl. Opt. 10, 577 (1971);E. V. Loewenstein, D. R. Smith, R. L. Morgan, “Optical Constants of Far IR Materials. 2: Crystalline Solids,” Appl. Opt. 12, 398 (1973);D. R. Smith, E. V. Loewenstein, “Optical Constants of Far Infrared Materials. 3: Plastics,” Appl. Opt. 14, 1355 (1975).
    [CrossRef] [PubMed]
  4. S. Ramo, J. R. Whinnery, Fields and Waves in Modern Radio (Wiley, New York, 1953).
  5. M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1959), p. 326.
  6. A. Hadni, J. Caludel, X. Gerbaux, G. Marlot, J.-M. Munier, “Sur le Comportement différent des cristaux et des verres dans l'absorption de l'infrarouge lointain (40–1500 μm) à la température de l'hélium liquide,” Appl. Opt. 4, 487 (1965).
    [CrossRef]
  7. G. Dall'Oglio, P. De Bernadis, S. Masi, F. Melchiorri, A. Blanco, F. D'Allesandro, S. Fonti, “Polarization Properties of Fluorogold in the Far Infrared,” Infrared Phys. 22, 185 (1982).
    [CrossRef]
  8. A. Blanco, S. Fonti, M. Mancarella, V. De Cosmo, “Polarization Properties of Some Materials at Near Millimeter Wavelengths,” Int. J. Infrared Millimeter Waves 4, 751 (1983).
    [CrossRef]
  9. D. Muehlner, R. Weiss, “Balloon Measurements of the Far Infrared Background Radiation,” Phys. Rev. D 7, 326 (1973).
    [CrossRef]
  10. I. G. Nolt, J. V. Radostitz, P. Kittel, R. J. Donnelly, “Submillimeter Detector Calibration with a Low Temperature Reference for Space Applications,” Rev. Sci. Instrum. 48, 700 (1977).
    [CrossRef]
  11. J. B. Peterson, P. L. Richards, “A Cryogenic Blackbody for Millimeter Wavelengths,” Int. J. Infrared Millimeter Waves 5, 1507 (1984).
    [CrossRef]
  12. H. Hemmati, J. C. Mather, W. L. Eichhorn, “Submillimeter and Millimeter Wave Characterization of Absorbing Materials,” Preprint.
  13. G. W. Chantry, H. E. Evans, J. W. Fleming, H. A. Gebbie, “TPX a New Material for Optical Components in the Far Infrared Spectral Region,” Infrared Phys. 9, 31 (1969).
    [CrossRef]
  14. K. K. Mon, A. J. Sievers, “Plexiglas: a Convenient Transmission Filter for the FIR Spectral Region,” Appl. Opt. 14, 1054 (1975).
    [CrossRef] [PubMed]

1984 (2)

J. B. Peterson, P. L. Richards, “A Cryogenic Blackbody for Millimeter Wavelengths,” Int. J. Infrared Millimeter Waves 5, 1507 (1984).
[CrossRef]

P. M. Downey et al., “Monolithic Silicon Bolometers,” Appl. Opt. 23, 910 (1984).
[CrossRef] [PubMed]

1983 (1)

A. Blanco, S. Fonti, M. Mancarella, V. De Cosmo, “Polarization Properties of Some Materials at Near Millimeter Wavelengths,” Int. J. Infrared Millimeter Waves 4, 751 (1983).
[CrossRef]

1982 (1)

G. Dall'Oglio, P. De Bernadis, S. Masi, F. Melchiorri, A. Blanco, F. D'Allesandro, S. Fonti, “Polarization Properties of Fluorogold in the Far Infrared,” Infrared Phys. 22, 185 (1982).
[CrossRef]

1977 (1)

I. G. Nolt, J. V. Radostitz, P. Kittel, R. J. Donnelly, “Submillimeter Detector Calibration with a Low Temperature Reference for Space Applications,” Rev. Sci. Instrum. 48, 700 (1977).
[CrossRef]

1975 (1)

1973 (1)

D. Muehlner, R. Weiss, “Balloon Measurements of the Far Infrared Background Radiation,” Phys. Rev. D 7, 326 (1973).
[CrossRef]

1971 (1)

1969 (1)

G. W. Chantry, H. E. Evans, J. W. Fleming, H. A. Gebbie, “TPX a New Material for Optical Components in the Far Infrared Spectral Region,” Infrared Phys. 9, 31 (1969).
[CrossRef]

1965 (1)

Blanco, A.

A. Blanco, S. Fonti, M. Mancarella, V. De Cosmo, “Polarization Properties of Some Materials at Near Millimeter Wavelengths,” Int. J. Infrared Millimeter Waves 4, 751 (1983).
[CrossRef]

G. Dall'Oglio, P. De Bernadis, S. Masi, F. Melchiorri, A. Blanco, F. D'Allesandro, S. Fonti, “Polarization Properties of Fluorogold in the Far Infrared,” Infrared Phys. 22, 185 (1982).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1959), p. 326.

Caludel, J.

Chantry, G. W.

G. W. Chantry, H. E. Evans, J. W. Fleming, H. A. Gebbie, “TPX a New Material for Optical Components in the Far Infrared Spectral Region,” Infrared Phys. 9, 31 (1969).
[CrossRef]

D'Allesandro, F.

G. Dall'Oglio, P. De Bernadis, S. Masi, F. Melchiorri, A. Blanco, F. D'Allesandro, S. Fonti, “Polarization Properties of Fluorogold in the Far Infrared,” Infrared Phys. 22, 185 (1982).
[CrossRef]

Dall'Oglio, G.

G. Dall'Oglio, P. De Bernadis, S. Masi, F. Melchiorri, A. Blanco, F. D'Allesandro, S. Fonti, “Polarization Properties of Fluorogold in the Far Infrared,” Infrared Phys. 22, 185 (1982).
[CrossRef]

De Bernadis, P.

G. Dall'Oglio, P. De Bernadis, S. Masi, F. Melchiorri, A. Blanco, F. D'Allesandro, S. Fonti, “Polarization Properties of Fluorogold in the Far Infrared,” Infrared Phys. 22, 185 (1982).
[CrossRef]

De Cosmo, V.

A. Blanco, S. Fonti, M. Mancarella, V. De Cosmo, “Polarization Properties of Some Materials at Near Millimeter Wavelengths,” Int. J. Infrared Millimeter Waves 4, 751 (1983).
[CrossRef]

Donnelly, R. J.

I. G. Nolt, J. V. Radostitz, P. Kittel, R. J. Donnelly, “Submillimeter Detector Calibration with a Low Temperature Reference for Space Applications,” Rev. Sci. Instrum. 48, 700 (1977).
[CrossRef]

Downey, P. M.

Eichhorn, W. L.

H. Hemmati, J. C. Mather, W. L. Eichhorn, “Submillimeter and Millimeter Wave Characterization of Absorbing Materials,” Preprint.

Evans, H. E.

G. W. Chantry, H. E. Evans, J. W. Fleming, H. A. Gebbie, “TPX a New Material for Optical Components in the Far Infrared Spectral Region,” Infrared Phys. 9, 31 (1969).
[CrossRef]

Fleming, J. W.

G. W. Chantry, H. E. Evans, J. W. Fleming, H. A. Gebbie, “TPX a New Material for Optical Components in the Far Infrared Spectral Region,” Infrared Phys. 9, 31 (1969).
[CrossRef]

Fonti, S.

A. Blanco, S. Fonti, M. Mancarella, V. De Cosmo, “Polarization Properties of Some Materials at Near Millimeter Wavelengths,” Int. J. Infrared Millimeter Waves 4, 751 (1983).
[CrossRef]

G. Dall'Oglio, P. De Bernadis, S. Masi, F. Melchiorri, A. Blanco, F. D'Allesandro, S. Fonti, “Polarization Properties of Fluorogold in the Far Infrared,” Infrared Phys. 22, 185 (1982).
[CrossRef]

Gebbie, H. A.

G. W. Chantry, H. E. Evans, J. W. Fleming, H. A. Gebbie, “TPX a New Material for Optical Components in the Far Infrared Spectral Region,” Infrared Phys. 9, 31 (1969).
[CrossRef]

Gerbaux, X.

Gush, H. P.

H. P. Gush, “Rocket Measurement of the Cosmic Background Submillimeter Spectrum,” in Proceedings, 1983 Space Helium Dewar Conference, J. B. Hendricks, G. R. Karr, Ed. (U. Alabama in Huntsville, 1984), p. 99.

Hadni, A.

Hemmati, H.

H. Hemmati, J. C. Mather, W. L. Eichhorn, “Submillimeter and Millimeter Wave Characterization of Absorbing Materials,” Preprint.

Kittel, P.

I. G. Nolt, J. V. Radostitz, P. Kittel, R. J. Donnelly, “Submillimeter Detector Calibration with a Low Temperature Reference for Space Applications,” Rev. Sci. Instrum. 48, 700 (1977).
[CrossRef]

Loewenstein, E. V.

Mancarella, M.

A. Blanco, S. Fonti, M. Mancarella, V. De Cosmo, “Polarization Properties of Some Materials at Near Millimeter Wavelengths,” Int. J. Infrared Millimeter Waves 4, 751 (1983).
[CrossRef]

Marlot, G.

Masi, S.

G. Dall'Oglio, P. De Bernadis, S. Masi, F. Melchiorri, A. Blanco, F. D'Allesandro, S. Fonti, “Polarization Properties of Fluorogold in the Far Infrared,” Infrared Phys. 22, 185 (1982).
[CrossRef]

Mather, J. C.

H. Hemmati, J. C. Mather, W. L. Eichhorn, “Submillimeter and Millimeter Wave Characterization of Absorbing Materials,” Preprint.

Melchiorri, F.

G. Dall'Oglio, P. De Bernadis, S. Masi, F. Melchiorri, A. Blanco, F. D'Allesandro, S. Fonti, “Polarization Properties of Fluorogold in the Far Infrared,” Infrared Phys. 22, 185 (1982).
[CrossRef]

Mon, K. K.

Muehlner, D.

D. Muehlner, R. Weiss, “Balloon Measurements of the Far Infrared Background Radiation,” Phys. Rev. D 7, 326 (1973).
[CrossRef]

Munier, J.-M.

Nolt, I. G.

I. G. Nolt, J. V. Radostitz, P. Kittel, R. J. Donnelly, “Submillimeter Detector Calibration with a Low Temperature Reference for Space Applications,” Rev. Sci. Instrum. 48, 700 (1977).
[CrossRef]

Peterson, J. B.

J. B. Peterson, P. L. Richards, “A Cryogenic Blackbody for Millimeter Wavelengths,” Int. J. Infrared Millimeter Waves 5, 1507 (1984).
[CrossRef]

Radostitz, J. V.

I. G. Nolt, J. V. Radostitz, P. Kittel, R. J. Donnelly, “Submillimeter Detector Calibration with a Low Temperature Reference for Space Applications,” Rev. Sci. Instrum. 48, 700 (1977).
[CrossRef]

Ramo, S.

S. Ramo, J. R. Whinnery, Fields and Waves in Modern Radio (Wiley, New York, 1953).

Richards, P. L.

J. B. Peterson, P. L. Richards, “A Cryogenic Blackbody for Millimeter Wavelengths,” Int. J. Infrared Millimeter Waves 5, 1507 (1984).
[CrossRef]

Sievers, A. J.

Smith, D. R.

Weiss, R.

D. Muehlner, R. Weiss, “Balloon Measurements of the Far Infrared Background Radiation,” Phys. Rev. D 7, 326 (1973).
[CrossRef]

Whinnery, J. R.

S. Ramo, J. R. Whinnery, Fields and Waves in Modern Radio (Wiley, New York, 1953).

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1959), p. 326.

Appl. Opt. (4)

Infrared Phys. (2)

G. Dall'Oglio, P. De Bernadis, S. Masi, F. Melchiorri, A. Blanco, F. D'Allesandro, S. Fonti, “Polarization Properties of Fluorogold in the Far Infrared,” Infrared Phys. 22, 185 (1982).
[CrossRef]

G. W. Chantry, H. E. Evans, J. W. Fleming, H. A. Gebbie, “TPX a New Material for Optical Components in the Far Infrared Spectral Region,” Infrared Phys. 9, 31 (1969).
[CrossRef]

Int. J. Infrared Millimeter Waves (2)

A. Blanco, S. Fonti, M. Mancarella, V. De Cosmo, “Polarization Properties of Some Materials at Near Millimeter Wavelengths,” Int. J. Infrared Millimeter Waves 4, 751 (1983).
[CrossRef]

J. B. Peterson, P. L. Richards, “A Cryogenic Blackbody for Millimeter Wavelengths,” Int. J. Infrared Millimeter Waves 5, 1507 (1984).
[CrossRef]

Phys. Rev. D (1)

D. Muehlner, R. Weiss, “Balloon Measurements of the Far Infrared Background Radiation,” Phys. Rev. D 7, 326 (1973).
[CrossRef]

Rev. Sci. Instrum. (1)

I. G. Nolt, J. V. Radostitz, P. Kittel, R. J. Donnelly, “Submillimeter Detector Calibration with a Low Temperature Reference for Space Applications,” Rev. Sci. Instrum. 48, 700 (1977).
[CrossRef]

Other (4)

H. P. Gush, “Rocket Measurement of the Cosmic Background Submillimeter Spectrum,” in Proceedings, 1983 Space Helium Dewar Conference, J. B. Hendricks, G. R. Karr, Ed. (U. Alabama in Huntsville, 1984), p. 99.

S. Ramo, J. R. Whinnery, Fields and Waves in Modern Radio (Wiley, New York, 1953).

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1959), p. 326.

H. Hemmati, J. C. Mather, W. L. Eichhorn, “Submillimeter and Millimeter Wave Characterization of Absorbing Materials,” Preprint.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Diagram of the optical system: P, a polarization interferometer (the dotted line represents wire grid polarizers, and the vertical arrows indicate the mirror movement altering the path difference); L, condensing lenses of TPX; S, a 600°C blackbody source; R, room at 23°C, a second blackbody radiation source; B, the liquid helium-cooled bolometer and sample wheel; and D, location of an optional detector not used for these measurements.

Fig. 2
Fig. 2

Diagram of the detector Dewar: C, a condensing cone and monolithic silicon bolometer2 fixed to the cold plate of a modified Infrared Laboratories liquid helium Dewar; P, a cooled preamplifier and load resistor; W, a copper wheel holding samples tied to the cold plate by a copper braid (not shown) and surrounded by the radiation shield S; K, a knob and shaft which drive the Nylon belt B by means of which the filter wheel is rotated; R, resistors to monitor the filter wheel position; N, the liquid nitrogen shield with a black polyethylene window; and V, the vacuum housing with a polyethylene window which acts as a diverging field lens.

Fig. 3
Fig. 3

Measured (heavy line) and fitted (light line) transmission curves for two thicknesses of Pyrex glass at a temperature near 5 K. The values of n and α listed are the parameters of the fitted curve. For the thinner sample Fabry-Perot interference maxima and minima (a channel spectrum) are clearly evident. For the thicker sample the channel spectrum is not resolved. The observed oscillations in that spectrum are due to optical coupling between the sample and detector cone assembly. These oscillations are also present in the upper spectrum. The peak at 18 cm−1 in both spectra is due to imperfect cancellation of a very strong water vapor absorption line.

Fig. 4
Fig. 4

Absorption coefficients as a function of frequency for Pyrex PX, a microscope cover slip M, a Schott glass S, and Fluorogold FG. The curves are plots of the best fit values of α = avb as per Table I. The lower of the two curves marked FG; 5 K is for a thin sample 1 mm thick. The smaller absorption coefficient than for thicker samples (upper curve) is probably due to a loss of glass filler during machining. Notice that at 30 cm−1 the absorption coefficients of Pyrex and Fluorogold do not vary with temperature.

Fig. 5
Fig. 5

Absorption coefficients of precast Eccosorb CR110 and Stycast 2850 FT. The error bar symbols show measurements at 2 K by Peterson and Richards11 for CR110 which they cast themselves. The circles are measurements reported by Hemmati et al.12 for CR110 mixed with CAB-O-SIL; open circles are room temperature results; filled circles are results at 80 K. Those authors saw no further change as their samples were cooled to 10 K.

Fig. 6
Fig. 6

Absorption coefficients of Neoprene, Plexiglas, and TPX. The fine dotted lines overlaying the Plexiglas curves are from previous work by Mon and Sievers.14 The departure from a power law reported by them in the 3–8-cm−1 region would cause a change of <1 ½% in our measured transmission spectra. We lack the sensitivity to see this effect.

Fig. 7
Fig. 7

Transmittance of room temperature Plexiglas showing a transmission window near 140 cm−1. The solid line passes through the peaks of a resolved channel spectrum measured on a BOMEM FT spectrometer. The dashed curve shows the absorption losses extrapolated from the low-frequency results of Table I. Measurements of thinner samples confirmed that transmission in the high-frequency window scales properly with sample thickness.

Tables (1)

Tables Icon

Table I Best Fit Optical Parameters1

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Y ( ν ) = n ( cos 2 π n ν d + j n sin 2 π n ν d n cos 2 π n ν d + j sin 2 π n ν d ) .
ρ = 1 Y ( ν ) 1 + Y ( ν ) .
R = ρ ρ * and T = 1 R .
c = ( 1 + σ j ω ) ,
× H = j ω c E ,
Y ( ν ) = 1 η ( η cosh γ d + sinh γ d cosh γ d + η sinh γ d ) ,
γ = j ω μ c = α / 2 + 2 π j n ν ,
η = μ / c = 1 n 1 + α / 2 π j n ν .
R = ρ ρ * and T = exp ( α d ) ( 1 R ) .
T = 2 n / ( n 2 + 1 ) .
n F = [ 1 + 4 π ( P T ( 1 δ ) + δ P G ) ] 1 / 2 ,
n F 2 n T 2 = δ ( n G 2 n T 2 ) .
n = n T 2 + 0.71 ( n F 2 n T 2 ) = 1.61 .

Metrics