Abstract

When an optical system focuses light through a transparent cover sheet, refractive-index variations create spherical aberration which can be partially compensated by adjusting the cover-sheet thickness. In practice, a wide range of refractive index can be tolerated by a diffraction-limited objective lens given such thickness optimization. For example, a system with a numerical aperture of 0.6 and a nominal cover-sheet thickness of 1.2 mm can tolerate a refractive-index range from 1.45 to 1.60.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. G. Howe, J. J. Wrobel, A. B. Marchant, F. F. Geyer, “High-Density Optical Recording in Organic Materials,” in Second SPSE Symposium on Optical Data Display Processing and Storage (1981), p. 97.
  2. R. A. Bartolini, A. E. Bell, R. E. Flory, M. Lurie, F. W. Spong, “Optical Disk Systems Emerge,” IEEE Spectrum 15, 20 (Aug.1978).
  3. A. B. Marchant, “Cover Sheet Aberations in Optical Recording,” Pro. Soc. Photo-Opt. Instrum. Eng. 421, 43 (1983).

1983 (1)

A. B. Marchant, “Cover Sheet Aberations in Optical Recording,” Pro. Soc. Photo-Opt. Instrum. Eng. 421, 43 (1983).

1981 (1)

D. G. Howe, J. J. Wrobel, A. B. Marchant, F. F. Geyer, “High-Density Optical Recording in Organic Materials,” in Second SPSE Symposium on Optical Data Display Processing and Storage (1981), p. 97.

1978 (1)

R. A. Bartolini, A. E. Bell, R. E. Flory, M. Lurie, F. W. Spong, “Optical Disk Systems Emerge,” IEEE Spectrum 15, 20 (Aug.1978).

Bartolini, R. A.

R. A. Bartolini, A. E. Bell, R. E. Flory, M. Lurie, F. W. Spong, “Optical Disk Systems Emerge,” IEEE Spectrum 15, 20 (Aug.1978).

Bell, A. E.

R. A. Bartolini, A. E. Bell, R. E. Flory, M. Lurie, F. W. Spong, “Optical Disk Systems Emerge,” IEEE Spectrum 15, 20 (Aug.1978).

Flory, R. E.

R. A. Bartolini, A. E. Bell, R. E. Flory, M. Lurie, F. W. Spong, “Optical Disk Systems Emerge,” IEEE Spectrum 15, 20 (Aug.1978).

Geyer, F. F.

D. G. Howe, J. J. Wrobel, A. B. Marchant, F. F. Geyer, “High-Density Optical Recording in Organic Materials,” in Second SPSE Symposium on Optical Data Display Processing and Storage (1981), p. 97.

Howe, D. G.

D. G. Howe, J. J. Wrobel, A. B. Marchant, F. F. Geyer, “High-Density Optical Recording in Organic Materials,” in Second SPSE Symposium on Optical Data Display Processing and Storage (1981), p. 97.

Lurie, M.

R. A. Bartolini, A. E. Bell, R. E. Flory, M. Lurie, F. W. Spong, “Optical Disk Systems Emerge,” IEEE Spectrum 15, 20 (Aug.1978).

Marchant, A. B.

A. B. Marchant, “Cover Sheet Aberations in Optical Recording,” Pro. Soc. Photo-Opt. Instrum. Eng. 421, 43 (1983).

D. G. Howe, J. J. Wrobel, A. B. Marchant, F. F. Geyer, “High-Density Optical Recording in Organic Materials,” in Second SPSE Symposium on Optical Data Display Processing and Storage (1981), p. 97.

Spong, F. W.

R. A. Bartolini, A. E. Bell, R. E. Flory, M. Lurie, F. W. Spong, “Optical Disk Systems Emerge,” IEEE Spectrum 15, 20 (Aug.1978).

Wrobel, J. J.

D. G. Howe, J. J. Wrobel, A. B. Marchant, F. F. Geyer, “High-Density Optical Recording in Organic Materials,” in Second SPSE Symposium on Optical Data Display Processing and Storage (1981), p. 97.

IEEE Spectrum (1)

R. A. Bartolini, A. E. Bell, R. E. Flory, M. Lurie, F. W. Spong, “Optical Disk Systems Emerge,” IEEE Spectrum 15, 20 (Aug.1978).

Pro. Soc. Photo-Opt. Instrum. Eng. (1)

A. B. Marchant, “Cover Sheet Aberations in Optical Recording,” Pro. Soc. Photo-Opt. Instrum. Eng. 421, 43 (1983).

Second SPSE Symposium on Optical Data Display Processing and Storage (1)

D. G. Howe, J. J. Wrobel, A. B. Marchant, F. F. Geyer, “High-Density Optical Recording in Organic Materials,” in Second SPSE Symposium on Optical Data Display Processing and Storage (1981), p. 97.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Recommended relationship between actual cover-sheet thickness and refractive index. See the text for an explanation of the design index.

Fig. 2
Fig. 2

Maximum aberration resulting when the recommended thickness vs index relationship is applied to an optical system with a numerical aperture of < 0.6. The solid and dashed lines correspond to different focusing techniques, as described in the text.

Fig. 3
Fig. 3

Optimized thickness vs index relationship for a system with a numerical aperture of 0.7. The dashed line describes the residual aberration, which is much greater than in the case of lower numerical aperture.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

OPI = d · cos θ + t ( n · cos θ cos θ / n ) ,
OP ( θ ) = d ̂ · cos θ + t ̂ ( n ̂ · cos θ ̂ cos θ / n ̂ ) t ( n · cos θ cos θ / n ) ,
d ̂ + t ̂ ( n ̂ 1 / n ̂ ) t ( n 1 / n ) = d ̂ · cos ϴ + t ̂ ( n ̂ · cos ϴ ̂ cos ϴ / n ̂ ) t ( n · cos ϴ cos ϴ / n ) ,
d ̂ t ̂ ( 1 cos ϕ / cos ϕ ̂ / n ̂ + t ( 1 cos ϕ / cos ϕ ) / n = 0 ,

Metrics