Abstract

A high-resolution differential optical absorption spectroscopy (DOAS) system for long-path atmospheric pollution monitoring is described. The system, consisting of a broadband lamp and a dispersive, fast-scanning optical receiver, separated by a few kilometers, was used in measurements of different pollutants, highlighted by the monitoring of the local concentration of atomic mercury. Mercury levels in the ppt (1:1012) range were assessed by comparisons with laboratory measurements.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. K. Killinger, A. Mooradian, Eds., Optical and Laser Remote Sensing (Springer-Verlag, Heidelberg, 1983).
  2. K. A. Fredriksson, B. Galle, K. Nyström, S. Svanberg, “Mobile Lidar System for Environmental Probing,” Appl. Opt. 20, 4181 (1981);K. A. Fredriksson, S. Svanberg, “Pollution Monitoring Using Nd:YAG Based Lidar Systems,” in Ref. 1.
    [Crossref] [PubMed]
  3. J. G. Hawley, L. D. Fletcher, G. F. Wallace, “Ground-Based Ultraviolet Differential Absorption Lidar (DIAL) System and Measurements,” in Ref. 1.
  4. E. V. Browell et al. “NASA Multipurpose Airborne DIAL System and Measurements of Ozone and Aerosol Profiles,” Appl. Opt. 22, 522 (1983);E. V. Browell, “Remote Sensing of Tropospheric Gases and Aerosols with an Airborne DIAL System,” in Ref. 1.
    [Crossref] [PubMed]
  5. K. Asai, T. Itabe, T. Igarashi, “Range-Resolved Measurements of Atmospheric Ozone Using a Differential-Absorption CO2 Laser Radar,” Appl. Phys. Lett. 35, 60 (1979).
    [Crossref]
  6. E. D. Hinkley, “Laser Spectroscopic Instrumentation and Techniques: Long-Path Monitoring by Resonance Absorption,” Opt. Quantum Electron. 8155 (1976).
    [Crossref]
  7. B. Marthinsson, J. Johansson, S. T. Eng, “Air Pollution Monitoring with a Computer-Controlled CO2-laser Long-Path Absorption System,” Opt. Quantum Electron. 12, 327 (1980).
    [Crossref]
  8. D. K. Killinger, N. Menyuk, “Remote Probing of the Atmosphere Using a CO2 DIAL System,” IEEE J. Quantum Electron. QE-17, 1917 (1981).
    [Crossref]
  9. H. Edner, S. Svanberg, L. Unéus, W. Wendt, “Gas-Correlation Lidar,” Opt. Lett. 9, 493 (1984).
    [Crossref] [PubMed]
  10. W. F. Herget, J. D. Brasher, “Remote Measurement of Gaseous Pollutant Concentrations Using a Mobile Fourier Transform Interferometer System,” Appl. Opt. 18, 3404 (1979).
    [Crossref] [PubMed]
  11. U. Platt, D. Perner, H. W. Pätz, “Simultaneous Measurement of Atmospheric CH2O, O3, and NO2 by Differential Optical Absorption,” J. Geophys. Res. 84, 6329 (1979);U. Platt, D. Perner, “Measurements of Atmospheric Trace Gases by Long Path Differential UV/Visible Absorption Spectroscopy,” in Ref. 1.
    [Crossref]
  12. P. V. Johnston, R. L. McKenzie, “Long-Path Absorption Measurements of Tropospheric NO2 in Rural New Zealand,” Geophys. Res. Lett. 11, 69 (1984).
    [Crossref]
  13. U. Platt, D. Perner, “Detection of Nitrous Acid in the Atmosphere by Differential Optical Absorption,” Geophys. Res. Lett. 6, 917 (1979).
    [Crossref]
  14. U. Platt, D. Perner, A. M. Winer, G. W. Harris, J. N. Pitts, “Detecton of NO3 in the Polluted Troposphere by Differential Optical Absorption,” Geophys. Res. Lett. 7, 89 (1980).
    [Crossref]
  15. U. Platt, D. Perner, A. M. Winer, G. W. Harris, J. N. Pitts, “Observations of Nitrous Acid in an Urban Atmosphere by Differential Optical Absorption,” Nature London 285, 312 (1980).
    [Crossref]
  16. U. Platt, D. Perner, “Direct Measurement of Atmospheric CH2O, HNO2, O3, and SO2 by Differential Optical Absorption in the Near UV,” J. Geophys. Res. 85, 7453 (1980).
    [Crossref]
  17. U. Platt, D. Perner, J. Schröder, C. Kessler, A. Tönnissen, “The Diurnal Variation of NO3,” J. Geophys. Res. 86, 11965 (1981).
    [Crossref]
  18. G. W. Harris, W. P. L. Carter, A. M. Winer, J. N. Pitts, U. Platt, D. Perner, “Observation of Nitrous Acid in the Los Angeles Atmosphere and Implications for Predictions of Ozone-Precursor Relationships,” Environ. Sci. Technol. 16, 414 (1982).
    [Crossref] [PubMed]
  19. Q. Bristow, I. R. Jonasson, “Vapour Sensing for Mineral Exploration,” Can. Min. J. 93, 39 (1972).
  20. I. R. Jonasson, R. W. Boyle, “Geochemistry of Mercury and Origins of Natural Contaminating of the Environment,” CIM Bull. 65, 32 (1972).
  21. V. Z. Fursov, N. B. Voltson, I. Khvalovskly, “Results of a Study of Mercury Vapour in the Tashkent Earthquake Zone,” Dokl. Akad. Nauk SSSR 179, 208 (1968).
  22. J. C. Varekamp, P. R. Buseck, “Hg Anomalies in Soils: a Geochemical Exploration Method for Geothermal Areas,” Geothermics 12, 29 (1983).
    [Crossref]
  23. N. Menyuk, D. K. Killinger, “Temporal Correlation Measurements of Pulsed Dual CO2 Lidar Returns,” Opt. Lett. 6, 301 (1981).
    [Crossref] [PubMed]
  24. C. Bohlen, E.-L. Reinholds, “A Differential Optical Absorption Spectrometer (DOAS) System for Monitoring of Atmospheric Constituents,” Diploma Paper, Lund Institute of Technology, Lund Reports on Atomic Physics LRAP-28 (1983).
  25. L. Unéus, “Construction and Programming of a Data Acquisition System for Differential Optical Absorption Spectroscopy (DOAS),” Diploma Paper, Lund Institute of Technology, Lund Reports on Atomic Physics LRAP-34 (1984), to appear.
  26. A. Sunesson, “Construction of a Multipass Absorption Cell,” Lund Reports on Atomic Physics LRAP-46 (1985).
  27. J. U. White, “Long Optical Paths of Large Aperture,” J. Opt. Soc. Am. 32, 285 (1942).
    [Crossref]
  28. R. Svensson, E. Ljungström, O. Lindqvist, “Kinetics of the Dark Reaction Between Nitrogen Dioxide and Water Vapour.” Acc. for Publication in Atmos. Environ.
  29. G. Herzberg, “Forbidden Transitions in Diatomic Molecules. II: The 3Σu ← 3Σg Absorption Bands of the Oxygen Molecule,” Can. J. Phys. 30, 185 (1952).
    [Crossref]
  30. R. W. B. Pearse, A. G. Gaydon, The Identification of Molecular Spectra (Chapman & Hall, London, 1963).
  31. D. C. Wolfe, R. L. Byer, “Model Studies of Laser Absorption Computed Tomography for Remote Air Pollution Measurement,” Appl. Opt. 21, 1165 (1982).
    [Crossref] [PubMed]

1984 (2)

H. Edner, S. Svanberg, L. Unéus, W. Wendt, “Gas-Correlation Lidar,” Opt. Lett. 9, 493 (1984).
[Crossref] [PubMed]

P. V. Johnston, R. L. McKenzie, “Long-Path Absorption Measurements of Tropospheric NO2 in Rural New Zealand,” Geophys. Res. Lett. 11, 69 (1984).
[Crossref]

1983 (2)

1982 (2)

D. C. Wolfe, R. L. Byer, “Model Studies of Laser Absorption Computed Tomography for Remote Air Pollution Measurement,” Appl. Opt. 21, 1165 (1982).
[Crossref] [PubMed]

G. W. Harris, W. P. L. Carter, A. M. Winer, J. N. Pitts, U. Platt, D. Perner, “Observation of Nitrous Acid in the Los Angeles Atmosphere and Implications for Predictions of Ozone-Precursor Relationships,” Environ. Sci. Technol. 16, 414 (1982).
[Crossref] [PubMed]

1981 (4)

1980 (4)

B. Marthinsson, J. Johansson, S. T. Eng, “Air Pollution Monitoring with a Computer-Controlled CO2-laser Long-Path Absorption System,” Opt. Quantum Electron. 12, 327 (1980).
[Crossref]

U. Platt, D. Perner, A. M. Winer, G. W. Harris, J. N. Pitts, “Detecton of NO3 in the Polluted Troposphere by Differential Optical Absorption,” Geophys. Res. Lett. 7, 89 (1980).
[Crossref]

U. Platt, D. Perner, A. M. Winer, G. W. Harris, J. N. Pitts, “Observations of Nitrous Acid in an Urban Atmosphere by Differential Optical Absorption,” Nature London 285, 312 (1980).
[Crossref]

U. Platt, D. Perner, “Direct Measurement of Atmospheric CH2O, HNO2, O3, and SO2 by Differential Optical Absorption in the Near UV,” J. Geophys. Res. 85, 7453 (1980).
[Crossref]

1979 (4)

K. Asai, T. Itabe, T. Igarashi, “Range-Resolved Measurements of Atmospheric Ozone Using a Differential-Absorption CO2 Laser Radar,” Appl. Phys. Lett. 35, 60 (1979).
[Crossref]

U. Platt, D. Perner, “Detection of Nitrous Acid in the Atmosphere by Differential Optical Absorption,” Geophys. Res. Lett. 6, 917 (1979).
[Crossref]

W. F. Herget, J. D. Brasher, “Remote Measurement of Gaseous Pollutant Concentrations Using a Mobile Fourier Transform Interferometer System,” Appl. Opt. 18, 3404 (1979).
[Crossref] [PubMed]

U. Platt, D. Perner, H. W. Pätz, “Simultaneous Measurement of Atmospheric CH2O, O3, and NO2 by Differential Optical Absorption,” J. Geophys. Res. 84, 6329 (1979);U. Platt, D. Perner, “Measurements of Atmospheric Trace Gases by Long Path Differential UV/Visible Absorption Spectroscopy,” in Ref. 1.
[Crossref]

1976 (1)

E. D. Hinkley, “Laser Spectroscopic Instrumentation and Techniques: Long-Path Monitoring by Resonance Absorption,” Opt. Quantum Electron. 8155 (1976).
[Crossref]

1972 (2)

Q. Bristow, I. R. Jonasson, “Vapour Sensing for Mineral Exploration,” Can. Min. J. 93, 39 (1972).

I. R. Jonasson, R. W. Boyle, “Geochemistry of Mercury and Origins of Natural Contaminating of the Environment,” CIM Bull. 65, 32 (1972).

1968 (1)

V. Z. Fursov, N. B. Voltson, I. Khvalovskly, “Results of a Study of Mercury Vapour in the Tashkent Earthquake Zone,” Dokl. Akad. Nauk SSSR 179, 208 (1968).

1952 (1)

G. Herzberg, “Forbidden Transitions in Diatomic Molecules. II: The 3Σu ← 3Σg Absorption Bands of the Oxygen Molecule,” Can. J. Phys. 30, 185 (1952).
[Crossref]

1942 (1)

Asai, K.

K. Asai, T. Itabe, T. Igarashi, “Range-Resolved Measurements of Atmospheric Ozone Using a Differential-Absorption CO2 Laser Radar,” Appl. Phys. Lett. 35, 60 (1979).
[Crossref]

Bohlen, C.

C. Bohlen, E.-L. Reinholds, “A Differential Optical Absorption Spectrometer (DOAS) System for Monitoring of Atmospheric Constituents,” Diploma Paper, Lund Institute of Technology, Lund Reports on Atomic Physics LRAP-28 (1983).

Boyle, R. W.

I. R. Jonasson, R. W. Boyle, “Geochemistry of Mercury and Origins of Natural Contaminating of the Environment,” CIM Bull. 65, 32 (1972).

Brasher, J. D.

Bristow, Q.

Q. Bristow, I. R. Jonasson, “Vapour Sensing for Mineral Exploration,” Can. Min. J. 93, 39 (1972).

Browell, E. V.

Buseck, P. R.

J. C. Varekamp, P. R. Buseck, “Hg Anomalies in Soils: a Geochemical Exploration Method for Geothermal Areas,” Geothermics 12, 29 (1983).
[Crossref]

Byer, R. L.

Carter, W. P. L.

G. W. Harris, W. P. L. Carter, A. M. Winer, J. N. Pitts, U. Platt, D. Perner, “Observation of Nitrous Acid in the Los Angeles Atmosphere and Implications for Predictions of Ozone-Precursor Relationships,” Environ. Sci. Technol. 16, 414 (1982).
[Crossref] [PubMed]

Edner, H.

Eng, S. T.

B. Marthinsson, J. Johansson, S. T. Eng, “Air Pollution Monitoring with a Computer-Controlled CO2-laser Long-Path Absorption System,” Opt. Quantum Electron. 12, 327 (1980).
[Crossref]

Fletcher, L. D.

J. G. Hawley, L. D. Fletcher, G. F. Wallace, “Ground-Based Ultraviolet Differential Absorption Lidar (DIAL) System and Measurements,” in Ref. 1.

Fredriksson, K. A.

Fursov, V. Z.

V. Z. Fursov, N. B. Voltson, I. Khvalovskly, “Results of a Study of Mercury Vapour in the Tashkent Earthquake Zone,” Dokl. Akad. Nauk SSSR 179, 208 (1968).

Galle, B.

Gaydon, A. G.

R. W. B. Pearse, A. G. Gaydon, The Identification of Molecular Spectra (Chapman & Hall, London, 1963).

Harris, G. W.

G. W. Harris, W. P. L. Carter, A. M. Winer, J. N. Pitts, U. Platt, D. Perner, “Observation of Nitrous Acid in the Los Angeles Atmosphere and Implications for Predictions of Ozone-Precursor Relationships,” Environ. Sci. Technol. 16, 414 (1982).
[Crossref] [PubMed]

U. Platt, D. Perner, A. M. Winer, G. W. Harris, J. N. Pitts, “Detecton of NO3 in the Polluted Troposphere by Differential Optical Absorption,” Geophys. Res. Lett. 7, 89 (1980).
[Crossref]

U. Platt, D. Perner, A. M. Winer, G. W. Harris, J. N. Pitts, “Observations of Nitrous Acid in an Urban Atmosphere by Differential Optical Absorption,” Nature London 285, 312 (1980).
[Crossref]

Hawley, J. G.

J. G. Hawley, L. D. Fletcher, G. F. Wallace, “Ground-Based Ultraviolet Differential Absorption Lidar (DIAL) System and Measurements,” in Ref. 1.

Herget, W. F.

Herzberg, G.

G. Herzberg, “Forbidden Transitions in Diatomic Molecules. II: The 3Σu ← 3Σg Absorption Bands of the Oxygen Molecule,” Can. J. Phys. 30, 185 (1952).
[Crossref]

Hinkley, E. D.

E. D. Hinkley, “Laser Spectroscopic Instrumentation and Techniques: Long-Path Monitoring by Resonance Absorption,” Opt. Quantum Electron. 8155 (1976).
[Crossref]

Igarashi, T.

K. Asai, T. Itabe, T. Igarashi, “Range-Resolved Measurements of Atmospheric Ozone Using a Differential-Absorption CO2 Laser Radar,” Appl. Phys. Lett. 35, 60 (1979).
[Crossref]

Itabe, T.

K. Asai, T. Itabe, T. Igarashi, “Range-Resolved Measurements of Atmospheric Ozone Using a Differential-Absorption CO2 Laser Radar,” Appl. Phys. Lett. 35, 60 (1979).
[Crossref]

Johansson, J.

B. Marthinsson, J. Johansson, S. T. Eng, “Air Pollution Monitoring with a Computer-Controlled CO2-laser Long-Path Absorption System,” Opt. Quantum Electron. 12, 327 (1980).
[Crossref]

Johnston, P. V.

P. V. Johnston, R. L. McKenzie, “Long-Path Absorption Measurements of Tropospheric NO2 in Rural New Zealand,” Geophys. Res. Lett. 11, 69 (1984).
[Crossref]

Jonasson, I. R.

Q. Bristow, I. R. Jonasson, “Vapour Sensing for Mineral Exploration,” Can. Min. J. 93, 39 (1972).

I. R. Jonasson, R. W. Boyle, “Geochemistry of Mercury and Origins of Natural Contaminating of the Environment,” CIM Bull. 65, 32 (1972).

Kessler, C.

U. Platt, D. Perner, J. Schröder, C. Kessler, A. Tönnissen, “The Diurnal Variation of NO3,” J. Geophys. Res. 86, 11965 (1981).
[Crossref]

Khvalovskly, I.

V. Z. Fursov, N. B. Voltson, I. Khvalovskly, “Results of a Study of Mercury Vapour in the Tashkent Earthquake Zone,” Dokl. Akad. Nauk SSSR 179, 208 (1968).

Killinger, D. K.

D. K. Killinger, N. Menyuk, “Remote Probing of the Atmosphere Using a CO2 DIAL System,” IEEE J. Quantum Electron. QE-17, 1917 (1981).
[Crossref]

N. Menyuk, D. K. Killinger, “Temporal Correlation Measurements of Pulsed Dual CO2 Lidar Returns,” Opt. Lett. 6, 301 (1981).
[Crossref] [PubMed]

Lindqvist, O.

R. Svensson, E. Ljungström, O. Lindqvist, “Kinetics of the Dark Reaction Between Nitrogen Dioxide and Water Vapour.” Acc. for Publication in Atmos. Environ.

Ljungström, E.

R. Svensson, E. Ljungström, O. Lindqvist, “Kinetics of the Dark Reaction Between Nitrogen Dioxide and Water Vapour.” Acc. for Publication in Atmos. Environ.

Marthinsson, B.

B. Marthinsson, J. Johansson, S. T. Eng, “Air Pollution Monitoring with a Computer-Controlled CO2-laser Long-Path Absorption System,” Opt. Quantum Electron. 12, 327 (1980).
[Crossref]

McKenzie, R. L.

P. V. Johnston, R. L. McKenzie, “Long-Path Absorption Measurements of Tropospheric NO2 in Rural New Zealand,” Geophys. Res. Lett. 11, 69 (1984).
[Crossref]

Menyuk, N.

D. K. Killinger, N. Menyuk, “Remote Probing of the Atmosphere Using a CO2 DIAL System,” IEEE J. Quantum Electron. QE-17, 1917 (1981).
[Crossref]

N. Menyuk, D. K. Killinger, “Temporal Correlation Measurements of Pulsed Dual CO2 Lidar Returns,” Opt. Lett. 6, 301 (1981).
[Crossref] [PubMed]

Nyström, K.

Pätz, H. W.

U. Platt, D. Perner, H. W. Pätz, “Simultaneous Measurement of Atmospheric CH2O, O3, and NO2 by Differential Optical Absorption,” J. Geophys. Res. 84, 6329 (1979);U. Platt, D. Perner, “Measurements of Atmospheric Trace Gases by Long Path Differential UV/Visible Absorption Spectroscopy,” in Ref. 1.
[Crossref]

Pearse, R. W. B.

R. W. B. Pearse, A. G. Gaydon, The Identification of Molecular Spectra (Chapman & Hall, London, 1963).

Perner, D.

G. W. Harris, W. P. L. Carter, A. M. Winer, J. N. Pitts, U. Platt, D. Perner, “Observation of Nitrous Acid in the Los Angeles Atmosphere and Implications for Predictions of Ozone-Precursor Relationships,” Environ. Sci. Technol. 16, 414 (1982).
[Crossref] [PubMed]

U. Platt, D. Perner, J. Schröder, C. Kessler, A. Tönnissen, “The Diurnal Variation of NO3,” J. Geophys. Res. 86, 11965 (1981).
[Crossref]

U. Platt, D. Perner, A. M. Winer, G. W. Harris, J. N. Pitts, “Detecton of NO3 in the Polluted Troposphere by Differential Optical Absorption,” Geophys. Res. Lett. 7, 89 (1980).
[Crossref]

U. Platt, D. Perner, “Direct Measurement of Atmospheric CH2O, HNO2, O3, and SO2 by Differential Optical Absorption in the Near UV,” J. Geophys. Res. 85, 7453 (1980).
[Crossref]

U. Platt, D. Perner, A. M. Winer, G. W. Harris, J. N. Pitts, “Observations of Nitrous Acid in an Urban Atmosphere by Differential Optical Absorption,” Nature London 285, 312 (1980).
[Crossref]

U. Platt, D. Perner, “Detection of Nitrous Acid in the Atmosphere by Differential Optical Absorption,” Geophys. Res. Lett. 6, 917 (1979).
[Crossref]

U. Platt, D. Perner, H. W. Pätz, “Simultaneous Measurement of Atmospheric CH2O, O3, and NO2 by Differential Optical Absorption,” J. Geophys. Res. 84, 6329 (1979);U. Platt, D. Perner, “Measurements of Atmospheric Trace Gases by Long Path Differential UV/Visible Absorption Spectroscopy,” in Ref. 1.
[Crossref]

Pitts, J. N.

G. W. Harris, W. P. L. Carter, A. M. Winer, J. N. Pitts, U. Platt, D. Perner, “Observation of Nitrous Acid in the Los Angeles Atmosphere and Implications for Predictions of Ozone-Precursor Relationships,” Environ. Sci. Technol. 16, 414 (1982).
[Crossref] [PubMed]

U. Platt, D. Perner, A. M. Winer, G. W. Harris, J. N. Pitts, “Detecton of NO3 in the Polluted Troposphere by Differential Optical Absorption,” Geophys. Res. Lett. 7, 89 (1980).
[Crossref]

U. Platt, D. Perner, A. M. Winer, G. W. Harris, J. N. Pitts, “Observations of Nitrous Acid in an Urban Atmosphere by Differential Optical Absorption,” Nature London 285, 312 (1980).
[Crossref]

Platt, U.

G. W. Harris, W. P. L. Carter, A. M. Winer, J. N. Pitts, U. Platt, D. Perner, “Observation of Nitrous Acid in the Los Angeles Atmosphere and Implications for Predictions of Ozone-Precursor Relationships,” Environ. Sci. Technol. 16, 414 (1982).
[Crossref] [PubMed]

U. Platt, D. Perner, J. Schröder, C. Kessler, A. Tönnissen, “The Diurnal Variation of NO3,” J. Geophys. Res. 86, 11965 (1981).
[Crossref]

U. Platt, D. Perner, “Direct Measurement of Atmospheric CH2O, HNO2, O3, and SO2 by Differential Optical Absorption in the Near UV,” J. Geophys. Res. 85, 7453 (1980).
[Crossref]

U. Platt, D. Perner, A. M. Winer, G. W. Harris, J. N. Pitts, “Observations of Nitrous Acid in an Urban Atmosphere by Differential Optical Absorption,” Nature London 285, 312 (1980).
[Crossref]

U. Platt, D. Perner, A. M. Winer, G. W. Harris, J. N. Pitts, “Detecton of NO3 in the Polluted Troposphere by Differential Optical Absorption,” Geophys. Res. Lett. 7, 89 (1980).
[Crossref]

U. Platt, D. Perner, H. W. Pätz, “Simultaneous Measurement of Atmospheric CH2O, O3, and NO2 by Differential Optical Absorption,” J. Geophys. Res. 84, 6329 (1979);U. Platt, D. Perner, “Measurements of Atmospheric Trace Gases by Long Path Differential UV/Visible Absorption Spectroscopy,” in Ref. 1.
[Crossref]

U. Platt, D. Perner, “Detection of Nitrous Acid in the Atmosphere by Differential Optical Absorption,” Geophys. Res. Lett. 6, 917 (1979).
[Crossref]

Reinholds, E.-L.

C. Bohlen, E.-L. Reinholds, “A Differential Optical Absorption Spectrometer (DOAS) System for Monitoring of Atmospheric Constituents,” Diploma Paper, Lund Institute of Technology, Lund Reports on Atomic Physics LRAP-28 (1983).

Schröder, J.

U. Platt, D. Perner, J. Schröder, C. Kessler, A. Tönnissen, “The Diurnal Variation of NO3,” J. Geophys. Res. 86, 11965 (1981).
[Crossref]

Sunesson, A.

A. Sunesson, “Construction of a Multipass Absorption Cell,” Lund Reports on Atomic Physics LRAP-46 (1985).

Svanberg, S.

Svensson, R.

R. Svensson, E. Ljungström, O. Lindqvist, “Kinetics of the Dark Reaction Between Nitrogen Dioxide and Water Vapour.” Acc. for Publication in Atmos. Environ.

Tönnissen, A.

U. Platt, D. Perner, J. Schröder, C. Kessler, A. Tönnissen, “The Diurnal Variation of NO3,” J. Geophys. Res. 86, 11965 (1981).
[Crossref]

Unéus, L.

H. Edner, S. Svanberg, L. Unéus, W. Wendt, “Gas-Correlation Lidar,” Opt. Lett. 9, 493 (1984).
[Crossref] [PubMed]

L. Unéus, “Construction and Programming of a Data Acquisition System for Differential Optical Absorption Spectroscopy (DOAS),” Diploma Paper, Lund Institute of Technology, Lund Reports on Atomic Physics LRAP-34 (1984), to appear.

Varekamp, J. C.

J. C. Varekamp, P. R. Buseck, “Hg Anomalies in Soils: a Geochemical Exploration Method for Geothermal Areas,” Geothermics 12, 29 (1983).
[Crossref]

Voltson, N. B.

V. Z. Fursov, N. B. Voltson, I. Khvalovskly, “Results of a Study of Mercury Vapour in the Tashkent Earthquake Zone,” Dokl. Akad. Nauk SSSR 179, 208 (1968).

Wallace, G. F.

J. G. Hawley, L. D. Fletcher, G. F. Wallace, “Ground-Based Ultraviolet Differential Absorption Lidar (DIAL) System and Measurements,” in Ref. 1.

Wendt, W.

White, J. U.

Winer, A. M.

G. W. Harris, W. P. L. Carter, A. M. Winer, J. N. Pitts, U. Platt, D. Perner, “Observation of Nitrous Acid in the Los Angeles Atmosphere and Implications for Predictions of Ozone-Precursor Relationships,” Environ. Sci. Technol. 16, 414 (1982).
[Crossref] [PubMed]

U. Platt, D. Perner, A. M. Winer, G. W. Harris, J. N. Pitts, “Detecton of NO3 in the Polluted Troposphere by Differential Optical Absorption,” Geophys. Res. Lett. 7, 89 (1980).
[Crossref]

U. Platt, D. Perner, A. M. Winer, G. W. Harris, J. N. Pitts, “Observations of Nitrous Acid in an Urban Atmosphere by Differential Optical Absorption,” Nature London 285, 312 (1980).
[Crossref]

Wolfe, D. C.

Appl. Opt. (4)

Appl. Phys. Lett. (1)

K. Asai, T. Itabe, T. Igarashi, “Range-Resolved Measurements of Atmospheric Ozone Using a Differential-Absorption CO2 Laser Radar,” Appl. Phys. Lett. 35, 60 (1979).
[Crossref]

Can. J. Phys. (1)

G. Herzberg, “Forbidden Transitions in Diatomic Molecules. II: The 3Σu ← 3Σg Absorption Bands of the Oxygen Molecule,” Can. J. Phys. 30, 185 (1952).
[Crossref]

Can. Min. J. (1)

Q. Bristow, I. R. Jonasson, “Vapour Sensing for Mineral Exploration,” Can. Min. J. 93, 39 (1972).

CIM Bull. (1)

I. R. Jonasson, R. W. Boyle, “Geochemistry of Mercury and Origins of Natural Contaminating of the Environment,” CIM Bull. 65, 32 (1972).

Dokl. Akad. Nauk SSSR (1)

V. Z. Fursov, N. B. Voltson, I. Khvalovskly, “Results of a Study of Mercury Vapour in the Tashkent Earthquake Zone,” Dokl. Akad. Nauk SSSR 179, 208 (1968).

Environ. Sci. Technol. (1)

G. W. Harris, W. P. L. Carter, A. M. Winer, J. N. Pitts, U. Platt, D. Perner, “Observation of Nitrous Acid in the Los Angeles Atmosphere and Implications for Predictions of Ozone-Precursor Relationships,” Environ. Sci. Technol. 16, 414 (1982).
[Crossref] [PubMed]

Geophys. Res. Lett. (3)

P. V. Johnston, R. L. McKenzie, “Long-Path Absorption Measurements of Tropospheric NO2 in Rural New Zealand,” Geophys. Res. Lett. 11, 69 (1984).
[Crossref]

U. Platt, D. Perner, “Detection of Nitrous Acid in the Atmosphere by Differential Optical Absorption,” Geophys. Res. Lett. 6, 917 (1979).
[Crossref]

U. Platt, D. Perner, A. M. Winer, G. W. Harris, J. N. Pitts, “Detecton of NO3 in the Polluted Troposphere by Differential Optical Absorption,” Geophys. Res. Lett. 7, 89 (1980).
[Crossref]

Geothermics (1)

J. C. Varekamp, P. R. Buseck, “Hg Anomalies in Soils: a Geochemical Exploration Method for Geothermal Areas,” Geothermics 12, 29 (1983).
[Crossref]

IEEE J. Quantum Electron. (1)

D. K. Killinger, N. Menyuk, “Remote Probing of the Atmosphere Using a CO2 DIAL System,” IEEE J. Quantum Electron. QE-17, 1917 (1981).
[Crossref]

J. Geophys. Res. (3)

U. Platt, D. Perner, H. W. Pätz, “Simultaneous Measurement of Atmospheric CH2O, O3, and NO2 by Differential Optical Absorption,” J. Geophys. Res. 84, 6329 (1979);U. Platt, D. Perner, “Measurements of Atmospheric Trace Gases by Long Path Differential UV/Visible Absorption Spectroscopy,” in Ref. 1.
[Crossref]

U. Platt, D. Perner, “Direct Measurement of Atmospheric CH2O, HNO2, O3, and SO2 by Differential Optical Absorption in the Near UV,” J. Geophys. Res. 85, 7453 (1980).
[Crossref]

U. Platt, D. Perner, J. Schröder, C. Kessler, A. Tönnissen, “The Diurnal Variation of NO3,” J. Geophys. Res. 86, 11965 (1981).
[Crossref]

J. Opt. Soc. Am. (1)

Nature London (1)

U. Platt, D. Perner, A. M. Winer, G. W. Harris, J. N. Pitts, “Observations of Nitrous Acid in an Urban Atmosphere by Differential Optical Absorption,” Nature London 285, 312 (1980).
[Crossref]

Opt. Lett. (2)

Opt. Quantum Electron. (2)

E. D. Hinkley, “Laser Spectroscopic Instrumentation and Techniques: Long-Path Monitoring by Resonance Absorption,” Opt. Quantum Electron. 8155 (1976).
[Crossref]

B. Marthinsson, J. Johansson, S. T. Eng, “Air Pollution Monitoring with a Computer-Controlled CO2-laser Long-Path Absorption System,” Opt. Quantum Electron. 12, 327 (1980).
[Crossref]

Other (7)

J. G. Hawley, L. D. Fletcher, G. F. Wallace, “Ground-Based Ultraviolet Differential Absorption Lidar (DIAL) System and Measurements,” in Ref. 1.

C. Bohlen, E.-L. Reinholds, “A Differential Optical Absorption Spectrometer (DOAS) System for Monitoring of Atmospheric Constituents,” Diploma Paper, Lund Institute of Technology, Lund Reports on Atomic Physics LRAP-28 (1983).

L. Unéus, “Construction and Programming of a Data Acquisition System for Differential Optical Absorption Spectroscopy (DOAS),” Diploma Paper, Lund Institute of Technology, Lund Reports on Atomic Physics LRAP-34 (1984), to appear.

A. Sunesson, “Construction of a Multipass Absorption Cell,” Lund Reports on Atomic Physics LRAP-46 (1985).

R. Svensson, E. Ljungström, O. Lindqvist, “Kinetics of the Dark Reaction Between Nitrogen Dioxide and Water Vapour.” Acc. for Publication in Atmos. Environ.

D. K. Killinger, A. Mooradian, Eds., Optical and Laser Remote Sensing (Springer-Verlag, Heidelberg, 1983).

R. W. B. Pearse, A. G. Gaydon, The Identification of Molecular Spectra (Chapman & Hall, London, 1963).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Rotating mirror scanning unit.

Fig. 3
Fig. 3

Diagram of the White cell. The alignment is illustrated for four passes, which is the minimum number of passes. The absorption length is then 8 m.

Fig. 4
Fig. 4

A, Raw atmospheric spectrum in the blue region with NO2 absorption (600-m path length). B, Fifth degree polynomial fit to A. (The curve is moved downward to avoid overlap.) C, A divided by B; magnification is 400 times.

Fig. 5
Fig. 5

An SO2 measurement with a 600-m absorption path length.

Fig. 6
Fig. 6

Oxygen absorption in the White cell in the wavelength region around 254 nm. The absorption path length is 80 m.

Fig. 7
Fig. 7

Differential optical absorption recording for a 700-m atmospheric path length showing signals due to Hg and forbidden O2 bands. In (a) the incoming light is first passed through a 1-mm Hg cell with a temperature of 18°C. In (b) the signal is due to natural Hg only. This is shown at higher amplification in (c).

Fig. 8
Fig. 8

Standard addition plot using two cells with 1- and 2-mm absorption paths at 18°C.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C = log ( I 0 / I ) / ( ɛ L ) ,

Metrics