Abstract

The effect of birefringence induced in a single-mode fiber by a lateral force has been applied to measure the absolute value of force or pressure with high resolution. A sensor configuration with an extended detecting surface has been investigated by means of calibrated weights. The sensor is sensitive to an incremental force of 2 × 10−3 N, independently of the length of the fiber. The maximum force applied was 10 N/m of fiber length.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Namihira, M. Kudo, Y. Mushiaka, “Effect of Mechanical Stress on the Transmission Characteristics of Optical Fibers,” Trans. IECE Jpn. 60-C, 107 (1977).
  2. M. Johnson, “In-line Fiber-Optical Polarization Transformer,” Appl. Opt. 18, 1288 (1979).
    [Crossref] [PubMed]
  3. N. Chinone, R. Ulrich, “Elasto-optic Polarization Measurement in Optical Fiber,” Opt. Lett. 6, 16 (1981).
    [Crossref] [PubMed]
  4. S. C. Rashleigh, “Acoustic Sensing with a Single Coiled Monomode Fiber,” Opt. Lett. 5, 392 (1980).
    [Crossref] [PubMed]
  5. J. Fields, C. Asawa, O. Ramer, M. Barnoski, “Fiber Optic Pressure Sensor,” J. Acoust. Soc. Am. 67, 816 (1980).
    [Crossref]
  6. W. B. Spillman, “Multimode Fiber-Optic Pressure Sensor Based on the Photoelastic Effect,” Opt. Lett. 7, 388 (1982).
    [Crossref] [PubMed]
  7. A. Bertholds, R. Dändliker, “Microprocessor Based Phase Determination for High Resolution Optical Sensors,” Electron. Lett. 21, 65 (1985).
    [Crossref]
  8. R. Ulrich, S. C. Rashleigh, W. Eickhoff, “Bending-Induced Birefringence in Single-Mode Fibers,” Opt. Lett. 5, 273 (1980).
    [Crossref] [PubMed]
  9. R. Ulrich, A. Simon, “Polarization Optics in Twisted Single-Mode Fibers,” Appl. Opt. 18, 2241 (1979).
    [Crossref] [PubMed]
  10. A. Barlow, D. Payne, M. Hadley, R. Mansfield, “Production of Single-Mode Fibers with Negligible Intrinsic Birefringence and Polarization Mode Dispersion,” Electron. Lett. 17, 725 (1981).
    [Crossref]
  11. A. Barlow, D. Payne, “The Stress-Optic Effect in Optical Fibers,” IEEE J. Quantum Electron. QE-19, 834 (1983).
    [Crossref]
  12. S. C. Rashleigh, “Origins and Control of Polarization Effects in Single-Mode Fibers,” IEEE, J. Lightwave Technol. LT-1, 312 (1983).
    [Crossref]
  13. R. Ulrich, S. C. Rashleigh, “Beam-to-Fiber Coupling with Low Standing Wave Ratio,” Appl. Opt. 19, 2453 (1980).
    [Crossref] [PubMed]

1985 (1)

A. Bertholds, R. Dändliker, “Microprocessor Based Phase Determination for High Resolution Optical Sensors,” Electron. Lett. 21, 65 (1985).
[Crossref]

1983 (2)

A. Barlow, D. Payne, “The Stress-Optic Effect in Optical Fibers,” IEEE J. Quantum Electron. QE-19, 834 (1983).
[Crossref]

S. C. Rashleigh, “Origins and Control of Polarization Effects in Single-Mode Fibers,” IEEE, J. Lightwave Technol. LT-1, 312 (1983).
[Crossref]

1982 (1)

1981 (2)

A. Barlow, D. Payne, M. Hadley, R. Mansfield, “Production of Single-Mode Fibers with Negligible Intrinsic Birefringence and Polarization Mode Dispersion,” Electron. Lett. 17, 725 (1981).
[Crossref]

N. Chinone, R. Ulrich, “Elasto-optic Polarization Measurement in Optical Fiber,” Opt. Lett. 6, 16 (1981).
[Crossref] [PubMed]

1980 (4)

1979 (2)

1977 (1)

Y. Namihira, M. Kudo, Y. Mushiaka, “Effect of Mechanical Stress on the Transmission Characteristics of Optical Fibers,” Trans. IECE Jpn. 60-C, 107 (1977).

Asawa, C.

J. Fields, C. Asawa, O. Ramer, M. Barnoski, “Fiber Optic Pressure Sensor,” J. Acoust. Soc. Am. 67, 816 (1980).
[Crossref]

Barlow, A.

A. Barlow, D. Payne, “The Stress-Optic Effect in Optical Fibers,” IEEE J. Quantum Electron. QE-19, 834 (1983).
[Crossref]

A. Barlow, D. Payne, M. Hadley, R. Mansfield, “Production of Single-Mode Fibers with Negligible Intrinsic Birefringence and Polarization Mode Dispersion,” Electron. Lett. 17, 725 (1981).
[Crossref]

Barnoski, M.

J. Fields, C. Asawa, O. Ramer, M. Barnoski, “Fiber Optic Pressure Sensor,” J. Acoust. Soc. Am. 67, 816 (1980).
[Crossref]

Bertholds, A.

A. Bertholds, R. Dändliker, “Microprocessor Based Phase Determination for High Resolution Optical Sensors,” Electron. Lett. 21, 65 (1985).
[Crossref]

Chinone, N.

Dändliker, R.

A. Bertholds, R. Dändliker, “Microprocessor Based Phase Determination for High Resolution Optical Sensors,” Electron. Lett. 21, 65 (1985).
[Crossref]

Eickhoff, W.

Fields, J.

J. Fields, C. Asawa, O. Ramer, M. Barnoski, “Fiber Optic Pressure Sensor,” J. Acoust. Soc. Am. 67, 816 (1980).
[Crossref]

Hadley, M.

A. Barlow, D. Payne, M. Hadley, R. Mansfield, “Production of Single-Mode Fibers with Negligible Intrinsic Birefringence and Polarization Mode Dispersion,” Electron. Lett. 17, 725 (1981).
[Crossref]

Johnson, M.

Kudo, M.

Y. Namihira, M. Kudo, Y. Mushiaka, “Effect of Mechanical Stress on the Transmission Characteristics of Optical Fibers,” Trans. IECE Jpn. 60-C, 107 (1977).

Mansfield, R.

A. Barlow, D. Payne, M. Hadley, R. Mansfield, “Production of Single-Mode Fibers with Negligible Intrinsic Birefringence and Polarization Mode Dispersion,” Electron. Lett. 17, 725 (1981).
[Crossref]

Mushiaka, Y.

Y. Namihira, M. Kudo, Y. Mushiaka, “Effect of Mechanical Stress on the Transmission Characteristics of Optical Fibers,” Trans. IECE Jpn. 60-C, 107 (1977).

Namihira, Y.

Y. Namihira, M. Kudo, Y. Mushiaka, “Effect of Mechanical Stress on the Transmission Characteristics of Optical Fibers,” Trans. IECE Jpn. 60-C, 107 (1977).

Payne, D.

A. Barlow, D. Payne, “The Stress-Optic Effect in Optical Fibers,” IEEE J. Quantum Electron. QE-19, 834 (1983).
[Crossref]

A. Barlow, D. Payne, M. Hadley, R. Mansfield, “Production of Single-Mode Fibers with Negligible Intrinsic Birefringence and Polarization Mode Dispersion,” Electron. Lett. 17, 725 (1981).
[Crossref]

Ramer, O.

J. Fields, C. Asawa, O. Ramer, M. Barnoski, “Fiber Optic Pressure Sensor,” J. Acoust. Soc. Am. 67, 816 (1980).
[Crossref]

Rashleigh, S. C.

Simon, A.

Spillman, W. B.

Ulrich, R.

Appl. Opt. (3)

Electron. Lett. (2)

A. Bertholds, R. Dändliker, “Microprocessor Based Phase Determination for High Resolution Optical Sensors,” Electron. Lett. 21, 65 (1985).
[Crossref]

A. Barlow, D. Payne, M. Hadley, R. Mansfield, “Production of Single-Mode Fibers with Negligible Intrinsic Birefringence and Polarization Mode Dispersion,” Electron. Lett. 17, 725 (1981).
[Crossref]

IEEE J. Quantum Electron. (1)

A. Barlow, D. Payne, “The Stress-Optic Effect in Optical Fibers,” IEEE J. Quantum Electron. QE-19, 834 (1983).
[Crossref]

IEEE, J. Lightwave Technol. (1)

S. C. Rashleigh, “Origins and Control of Polarization Effects in Single-Mode Fibers,” IEEE, J. Lightwave Technol. LT-1, 312 (1983).
[Crossref]

J. Acoust. Soc. Am. (1)

J. Fields, C. Asawa, O. Ramer, M. Barnoski, “Fiber Optic Pressure Sensor,” J. Acoust. Soc. Am. 67, 816 (1980).
[Crossref]

Opt. Lett. (4)

Trans. IECE (1)

Y. Namihira, M. Kudo, Y. Mushiaka, “Effect of Mechanical Stress on the Transmission Characteristics of Optical Fibers,” Trans. IECE Jpn. 60-C, 107 (1977).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Sensor configuration.

Fig. 2
Fig. 2

Relative error δβ/β of the birefringence as a function of β for different twist rates τ (rad/m).

Fig. 3
Fig. 3

Sensor configuration with increased sensitivity by a factor of 3.

Fig. 4
Fig. 4

Detector output vs time (0.1 s/div) for loading and unloading the sensor with ∼3 kg.

Fig. 5
Fig. 5

Measured phase vs time for loading and unloading of 1-g wt. (Three measurements/s, 20-μs sample acquisition time).

Fig. 6
Fig. 6

Induced birefringence as a function of applied load. Deviation from linear least-square fit over the range of one period (2π rad or 1.14 kg).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I 1 = a 1 [ 1 + m 1 cos ( ϕ ) ] ,
I 2 = a 2 [ 1 + m 2 cos ( ϕ ψ ) ]
tan ϕ = ( { m 1 [ ( I 2 / a 2 ) 1 ] / m 2 [ ( I 1 / a 1 ) 1 ] } cos ψ ) / sin ψ .
β f = 8 C f / λ r ,
C = n 3 ( p 11 p 12 ) ( 1 + ν ) / 2 E ,
β b = π C E r 2 / λ R 2 .
β = β b β f ,
β α = ( β 2 + α 2 ) 1 / 2 = [ β 2 + ( g τ ) 2 ] 1 / 2 ,
ϕ = ( β b β f ) L = π E C L r 2 / λ R 2 8 C F / λ r ,
d ϕ / d F = 8 C / λ r .

Metrics