Abstract

A novel technique for the generation of single-pulse rotational CARS spectra is presented and demonstrated flows and flames. The technique is based on a multiple four-color interaction, where the rotational in gas with two photons of different frequencies from a broadband dye laser, and by coupling to a energies are excited photon from a frequency-doubled Nd:YAG laser a rotational CARS photon is created. An interesting third feature of the technique is the possibility of simultaneously generating both a rotational and vibrational using a double-folded BOXCARS arrangement. This technique is demonstrated on N2 CARS spectrum molecules.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. R. Regnier, J. P. E. Taran, “On the Possibility of Measuring Gas Concentrations by Stimulated Anti-Stokes Scattering,” Appl. Phys. Lett. 23, 240 (1973).
    [Crossref]
  2. P. R. Regnier, F. Moya, J. P. E. Taran, “Gas Concentration Measurement by Coherent Raman Anti-Stokes Scattering,” AIAA J. 12, 826 (1974).
    [Crossref]
  3. W. B. Roh, P. W. Schreiber, J. P. E. Taran, “Single-Pulse Coherent Anti-Stokes Raman Scattering,” Appl. Phys. Lett. 29, 174 (1976).
    [Crossref]
  4. A. C. Eckbreth, “BOXCARS: Crossed-Beam Phase-Matched CARS Generation in Gases,” Appl. Phys. Lett. 32, 421 (1978).
    [Crossref]
  5. A. C. Eckbreth, “CARS Thermometry in Practical Combustors,” Combust. Flame 39, 133 (1980).
    [Crossref]
  6. D. A. Greenhalgh, F. M. Porter, W. A. England, “The Application of Coherent Anti-Stokes Raman Scattering to Turbulent Combustion Thermometry,” Combust. Flame 49, 171 (1983).
    [Crossref]
  7. M. Aldén, S. Wallin, “CARS Experiments in a Full-Scale (10 × 10 m) Industrial Coal Furnace,” Appl. Opt. 24, 3434 (1985).
    [Crossref] [PubMed]
  8. E. J. Beiting, “Multiplex CARS Temperature Measurements in a Coal-Fired MHD Environment,” Appl. Opt. 25, 1684 (1986).
    [Crossref] [PubMed]
  9. J. J. Barrett, “Generation of Coherent Anti-Stokes Rotational Raman Radiation in Hydrogen Gas,” Appl. Phys. Lett. 29, 722 (1976).
    [Crossref]
  10. I. R. Beattie, T. R. Gilson, D. A. Greenhalgh, “Low Frequency Anti-Stokes Raman Spectroscopy of Air,” Nature London 276, 378 (1978).
    [Crossref]
  11. L. P. Goss, J. W. Fleming, A. B. Harvey, “Pure Rotational Coherent Anti-Stokes Raman Scattering of Simple Gases,” Opt. Lett. 5, 345 (1980).
    [Crossref] [PubMed]
  12. J. A. Shirley, R. J. Hall, A. C. Eckbreth, “Folded BOXCARS for Rotational Raman Studies,” Opt. Lett. 5, 380 (1980); Y. Prior, “Three-Dimensional Phase Matching in Four-Wave Mixing,” Appl. Opt. 19, 1741 (1980).
    [Crossref] [PubMed]
  13. D. V. Murphy, R. K. Chang, “Single-Pulse Broadband Rotational Coherent Anti-Stokes Raman-Scattering Thermometry of Cold N2 Gas,” Opt. Lett. 6, 233 (1981).
    [Crossref] [PubMed]
  14. J. Zheng, J. B. Snow, D. V. Murphy, A. Leipertz, R. K. Chang, R. L. Farrow, “Experimental Comparison of Broadband Rotational Coherent Anti-Stokes Raman Scattering (CARS) and Broadband Vibrational CARS in a Flame,” Opt. Lett. 9, 341 (1984).
    [Crossref] [PubMed]
  15. A. C. Eckbreth, T. J. Anderson, “Dual Broadband CARS for Simultaneous, Multiple Species Measurements,” Appl. Opt. 24, 2731 (1985); A. C. Eckbreth, T. J. Anderson, “Dual Broadband USED CARS,” Appl. Opt. 25, 1534 (1986).
    [Crossref] [PubMed]
  16. L. M. Roland, W. A. Steele, “Intensities in Pure Rotational CARS of Air,” J. Chem. Phys. 73, 5919 (1980).
    [Crossref]
  17. R. J. Hall, “Pressure-Broadened Linewidths for N2 Coherent Anti-Stokes Raman Spectroscopy Thermometry,” Appl. Spectrosc. 34, 700 (1980).
    [Crossref]
  18. R. J. Hall, A. C. Eckbreth, “Coherent Anti-Stokes Raman Spectroscopy (CARS): Application to Combustion Diagnostics,” in Laser Applications, Vol. 5, J. F. Ready, R. K. Erf, Eds. (Academic, New York, 1984).
  19. K. S. Jammu, G. S. St. John, H. L. Welsh, “Pressure Broadening of the Rotational Raman Lines of Some Simple Gases,” Can. J. Phys. 44, 797 (1966).
    [Crossref]
  20. M. A. Yuratich, “Effects of Laser Linewidth on Coherent Anti-Stokes Raman Spectroscopy,” Mol. Phys. 38, 625 (1979).
    [Crossref]
  21. M. Aldén, H. Edner, S. Svanberg, “Coherent Anti-Stokes Raman Spectroscopy (CARS) Applied in Combustion Probing,” Phys. Scr. 27, 29 (1983).
    [Crossref]
  22. J. B. Zheng, A. Leipertz, J. B. Snow, R. K. Chang, “Simultaneous Observation of Rotational Coherent Stokes Raman Scattering and Coherent Anti-Stokes Raman Scattering in Air and Nitrogen,” Opt. Lett. 8, 350 (1983).
    [Crossref] [PubMed]
  23. D. R. Snelling, R. A. Sawchuk, R. E. Mueller, “Single Pulse CARS Noise: A Comparison Between Single-Mode and Multimode Pump Lasers,” Appl. Opt. 24, 2771 (1985).
    [Crossref] [PubMed]
  24. D. A. Greenhalgh, S. T. Whittley, “Mode Noise in Broadband CARS Spectroscopy,” Appl. Opt. 24, 907 (1985).
    [Crossref] [PubMed]
  25. S. Kröll, M. Aldén, T. Berglind, R. J. Hall, to be published.
  26. L. P. Goss, D. D. Trump, B. G. MacDonald, G. L. Switzer, “10-Hz Coherent Anti-Stokes Raman Spectroscopy Apparatus for Turbulent Combustion Studies,” Rev. Sci. Instrum. 54, 563 (1983).
    [Crossref]
  27. A. C. Eckbreth, “Optical Splitter for Dynamic Range Enhancement of Optical Multichannel Detectors,” Appl. Opt. 22, 2118 (1983).
    [Crossref] [PubMed]
  28. A. C. Eckbreth, T. J. Anderson, “Simultaneous Rotational Coherent Anti-Stokes Raman Spectroscopy and Coherent Stokes Raman Spectroscopy with Arbitrary Pump-Stokes Spectral Separation,” Opt. Lett. 11, 496 (1986).
    [Crossref] [PubMed]

1986 (2)

1985 (4)

1984 (1)

1983 (5)

M. Aldén, H. Edner, S. Svanberg, “Coherent Anti-Stokes Raman Spectroscopy (CARS) Applied in Combustion Probing,” Phys. Scr. 27, 29 (1983).
[Crossref]

J. B. Zheng, A. Leipertz, J. B. Snow, R. K. Chang, “Simultaneous Observation of Rotational Coherent Stokes Raman Scattering and Coherent Anti-Stokes Raman Scattering in Air and Nitrogen,” Opt. Lett. 8, 350 (1983).
[Crossref] [PubMed]

L. P. Goss, D. D. Trump, B. G. MacDonald, G. L. Switzer, “10-Hz Coherent Anti-Stokes Raman Spectroscopy Apparatus for Turbulent Combustion Studies,” Rev. Sci. Instrum. 54, 563 (1983).
[Crossref]

A. C. Eckbreth, “Optical Splitter for Dynamic Range Enhancement of Optical Multichannel Detectors,” Appl. Opt. 22, 2118 (1983).
[Crossref] [PubMed]

D. A. Greenhalgh, F. M. Porter, W. A. England, “The Application of Coherent Anti-Stokes Raman Scattering to Turbulent Combustion Thermometry,” Combust. Flame 49, 171 (1983).
[Crossref]

1981 (1)

1980 (5)

1979 (1)

M. A. Yuratich, “Effects of Laser Linewidth on Coherent Anti-Stokes Raman Spectroscopy,” Mol. Phys. 38, 625 (1979).
[Crossref]

1978 (2)

I. R. Beattie, T. R. Gilson, D. A. Greenhalgh, “Low Frequency Anti-Stokes Raman Spectroscopy of Air,” Nature London 276, 378 (1978).
[Crossref]

A. C. Eckbreth, “BOXCARS: Crossed-Beam Phase-Matched CARS Generation in Gases,” Appl. Phys. Lett. 32, 421 (1978).
[Crossref]

1976 (2)

W. B. Roh, P. W. Schreiber, J. P. E. Taran, “Single-Pulse Coherent Anti-Stokes Raman Scattering,” Appl. Phys. Lett. 29, 174 (1976).
[Crossref]

J. J. Barrett, “Generation of Coherent Anti-Stokes Rotational Raman Radiation in Hydrogen Gas,” Appl. Phys. Lett. 29, 722 (1976).
[Crossref]

1974 (1)

P. R. Regnier, F. Moya, J. P. E. Taran, “Gas Concentration Measurement by Coherent Raman Anti-Stokes Scattering,” AIAA J. 12, 826 (1974).
[Crossref]

1973 (1)

P. R. Regnier, J. P. E. Taran, “On the Possibility of Measuring Gas Concentrations by Stimulated Anti-Stokes Scattering,” Appl. Phys. Lett. 23, 240 (1973).
[Crossref]

1966 (1)

K. S. Jammu, G. S. St. John, H. L. Welsh, “Pressure Broadening of the Rotational Raman Lines of Some Simple Gases,” Can. J. Phys. 44, 797 (1966).
[Crossref]

Aldén, M.

M. Aldén, S. Wallin, “CARS Experiments in a Full-Scale (10 × 10 m) Industrial Coal Furnace,” Appl. Opt. 24, 3434 (1985).
[Crossref] [PubMed]

M. Aldén, H. Edner, S. Svanberg, “Coherent Anti-Stokes Raman Spectroscopy (CARS) Applied in Combustion Probing,” Phys. Scr. 27, 29 (1983).
[Crossref]

S. Kröll, M. Aldén, T. Berglind, R. J. Hall, to be published.

Anderson, T. J.

Barrett, J. J.

J. J. Barrett, “Generation of Coherent Anti-Stokes Rotational Raman Radiation in Hydrogen Gas,” Appl. Phys. Lett. 29, 722 (1976).
[Crossref]

Beattie, I. R.

I. R. Beattie, T. R. Gilson, D. A. Greenhalgh, “Low Frequency Anti-Stokes Raman Spectroscopy of Air,” Nature London 276, 378 (1978).
[Crossref]

Beiting, E. J.

Berglind, T.

S. Kröll, M. Aldén, T. Berglind, R. J. Hall, to be published.

Chang, R. K.

Eckbreth, A. C.

Edner, H.

M. Aldén, H. Edner, S. Svanberg, “Coherent Anti-Stokes Raman Spectroscopy (CARS) Applied in Combustion Probing,” Phys. Scr. 27, 29 (1983).
[Crossref]

England, W. A.

D. A. Greenhalgh, F. M. Porter, W. A. England, “The Application of Coherent Anti-Stokes Raman Scattering to Turbulent Combustion Thermometry,” Combust. Flame 49, 171 (1983).
[Crossref]

Farrow, R. L.

Fleming, J. W.

Gilson, T. R.

I. R. Beattie, T. R. Gilson, D. A. Greenhalgh, “Low Frequency Anti-Stokes Raman Spectroscopy of Air,” Nature London 276, 378 (1978).
[Crossref]

Goss, L. P.

L. P. Goss, D. D. Trump, B. G. MacDonald, G. L. Switzer, “10-Hz Coherent Anti-Stokes Raman Spectroscopy Apparatus for Turbulent Combustion Studies,” Rev. Sci. Instrum. 54, 563 (1983).
[Crossref]

L. P. Goss, J. W. Fleming, A. B. Harvey, “Pure Rotational Coherent Anti-Stokes Raman Scattering of Simple Gases,” Opt. Lett. 5, 345 (1980).
[Crossref] [PubMed]

Greenhalgh, D. A.

D. A. Greenhalgh, S. T. Whittley, “Mode Noise in Broadband CARS Spectroscopy,” Appl. Opt. 24, 907 (1985).
[Crossref] [PubMed]

D. A. Greenhalgh, F. M. Porter, W. A. England, “The Application of Coherent Anti-Stokes Raman Scattering to Turbulent Combustion Thermometry,” Combust. Flame 49, 171 (1983).
[Crossref]

I. R. Beattie, T. R. Gilson, D. A. Greenhalgh, “Low Frequency Anti-Stokes Raman Spectroscopy of Air,” Nature London 276, 378 (1978).
[Crossref]

Hall, R. J.

R. J. Hall, “Pressure-Broadened Linewidths for N2 Coherent Anti-Stokes Raman Spectroscopy Thermometry,” Appl. Spectrosc. 34, 700 (1980).
[Crossref]

J. A. Shirley, R. J. Hall, A. C. Eckbreth, “Folded BOXCARS for Rotational Raman Studies,” Opt. Lett. 5, 380 (1980); Y. Prior, “Three-Dimensional Phase Matching in Four-Wave Mixing,” Appl. Opt. 19, 1741 (1980).
[Crossref] [PubMed]

R. J. Hall, A. C. Eckbreth, “Coherent Anti-Stokes Raman Spectroscopy (CARS): Application to Combustion Diagnostics,” in Laser Applications, Vol. 5, J. F. Ready, R. K. Erf, Eds. (Academic, New York, 1984).

S. Kröll, M. Aldén, T. Berglind, R. J. Hall, to be published.

Harvey, A. B.

Jammu, K. S.

K. S. Jammu, G. S. St. John, H. L. Welsh, “Pressure Broadening of the Rotational Raman Lines of Some Simple Gases,” Can. J. Phys. 44, 797 (1966).
[Crossref]

John, G. S. St.

K. S. Jammu, G. S. St. John, H. L. Welsh, “Pressure Broadening of the Rotational Raman Lines of Some Simple Gases,” Can. J. Phys. 44, 797 (1966).
[Crossref]

Kröll, S.

S. Kröll, M. Aldén, T. Berglind, R. J. Hall, to be published.

Leipertz, A.

MacDonald, B. G.

L. P. Goss, D. D. Trump, B. G. MacDonald, G. L. Switzer, “10-Hz Coherent Anti-Stokes Raman Spectroscopy Apparatus for Turbulent Combustion Studies,” Rev. Sci. Instrum. 54, 563 (1983).
[Crossref]

Moya, F.

P. R. Regnier, F. Moya, J. P. E. Taran, “Gas Concentration Measurement by Coherent Raman Anti-Stokes Scattering,” AIAA J. 12, 826 (1974).
[Crossref]

Mueller, R. E.

Murphy, D. V.

Porter, F. M.

D. A. Greenhalgh, F. M. Porter, W. A. England, “The Application of Coherent Anti-Stokes Raman Scattering to Turbulent Combustion Thermometry,” Combust. Flame 49, 171 (1983).
[Crossref]

Regnier, P. R.

P. R. Regnier, F. Moya, J. P. E. Taran, “Gas Concentration Measurement by Coherent Raman Anti-Stokes Scattering,” AIAA J. 12, 826 (1974).
[Crossref]

P. R. Regnier, J. P. E. Taran, “On the Possibility of Measuring Gas Concentrations by Stimulated Anti-Stokes Scattering,” Appl. Phys. Lett. 23, 240 (1973).
[Crossref]

Roh, W. B.

W. B. Roh, P. W. Schreiber, J. P. E. Taran, “Single-Pulse Coherent Anti-Stokes Raman Scattering,” Appl. Phys. Lett. 29, 174 (1976).
[Crossref]

Roland, L. M.

L. M. Roland, W. A. Steele, “Intensities in Pure Rotational CARS of Air,” J. Chem. Phys. 73, 5919 (1980).
[Crossref]

Sawchuk, R. A.

Schreiber, P. W.

W. B. Roh, P. W. Schreiber, J. P. E. Taran, “Single-Pulse Coherent Anti-Stokes Raman Scattering,” Appl. Phys. Lett. 29, 174 (1976).
[Crossref]

Shirley, J. A.

Snelling, D. R.

Snow, J. B.

Steele, W. A.

L. M. Roland, W. A. Steele, “Intensities in Pure Rotational CARS of Air,” J. Chem. Phys. 73, 5919 (1980).
[Crossref]

Svanberg, S.

M. Aldén, H. Edner, S. Svanberg, “Coherent Anti-Stokes Raman Spectroscopy (CARS) Applied in Combustion Probing,” Phys. Scr. 27, 29 (1983).
[Crossref]

Switzer, G. L.

L. P. Goss, D. D. Trump, B. G. MacDonald, G. L. Switzer, “10-Hz Coherent Anti-Stokes Raman Spectroscopy Apparatus for Turbulent Combustion Studies,” Rev. Sci. Instrum. 54, 563 (1983).
[Crossref]

Taran, J. P. E.

W. B. Roh, P. W. Schreiber, J. P. E. Taran, “Single-Pulse Coherent Anti-Stokes Raman Scattering,” Appl. Phys. Lett. 29, 174 (1976).
[Crossref]

P. R. Regnier, F. Moya, J. P. E. Taran, “Gas Concentration Measurement by Coherent Raman Anti-Stokes Scattering,” AIAA J. 12, 826 (1974).
[Crossref]

P. R. Regnier, J. P. E. Taran, “On the Possibility of Measuring Gas Concentrations by Stimulated Anti-Stokes Scattering,” Appl. Phys. Lett. 23, 240 (1973).
[Crossref]

Trump, D. D.

L. P. Goss, D. D. Trump, B. G. MacDonald, G. L. Switzer, “10-Hz Coherent Anti-Stokes Raman Spectroscopy Apparatus for Turbulent Combustion Studies,” Rev. Sci. Instrum. 54, 563 (1983).
[Crossref]

Wallin, S.

Welsh, H. L.

K. S. Jammu, G. S. St. John, H. L. Welsh, “Pressure Broadening of the Rotational Raman Lines of Some Simple Gases,” Can. J. Phys. 44, 797 (1966).
[Crossref]

Whittley, S. T.

Yuratich, M. A.

M. A. Yuratich, “Effects of Laser Linewidth on Coherent Anti-Stokes Raman Spectroscopy,” Mol. Phys. 38, 625 (1979).
[Crossref]

Zheng, J.

Zheng, J. B.

AIAA J. (1)

P. R. Regnier, F. Moya, J. P. E. Taran, “Gas Concentration Measurement by Coherent Raman Anti-Stokes Scattering,” AIAA J. 12, 826 (1974).
[Crossref]

Appl. Opt. (6)

Appl. Phys. Lett. (4)

P. R. Regnier, J. P. E. Taran, “On the Possibility of Measuring Gas Concentrations by Stimulated Anti-Stokes Scattering,” Appl. Phys. Lett. 23, 240 (1973).
[Crossref]

J. J. Barrett, “Generation of Coherent Anti-Stokes Rotational Raman Radiation in Hydrogen Gas,” Appl. Phys. Lett. 29, 722 (1976).
[Crossref]

W. B. Roh, P. W. Schreiber, J. P. E. Taran, “Single-Pulse Coherent Anti-Stokes Raman Scattering,” Appl. Phys. Lett. 29, 174 (1976).
[Crossref]

A. C. Eckbreth, “BOXCARS: Crossed-Beam Phase-Matched CARS Generation in Gases,” Appl. Phys. Lett. 32, 421 (1978).
[Crossref]

Appl. Spectrosc. (1)

Can. J. Phys. (1)

K. S. Jammu, G. S. St. John, H. L. Welsh, “Pressure Broadening of the Rotational Raman Lines of Some Simple Gases,” Can. J. Phys. 44, 797 (1966).
[Crossref]

Combust. Flame (2)

A. C. Eckbreth, “CARS Thermometry in Practical Combustors,” Combust. Flame 39, 133 (1980).
[Crossref]

D. A. Greenhalgh, F. M. Porter, W. A. England, “The Application of Coherent Anti-Stokes Raman Scattering to Turbulent Combustion Thermometry,” Combust. Flame 49, 171 (1983).
[Crossref]

J. Chem. Phys. (1)

L. M. Roland, W. A. Steele, “Intensities in Pure Rotational CARS of Air,” J. Chem. Phys. 73, 5919 (1980).
[Crossref]

Mol. Phys. (1)

M. A. Yuratich, “Effects of Laser Linewidth on Coherent Anti-Stokes Raman Spectroscopy,” Mol. Phys. 38, 625 (1979).
[Crossref]

Nature London (1)

I. R. Beattie, T. R. Gilson, D. A. Greenhalgh, “Low Frequency Anti-Stokes Raman Spectroscopy of Air,” Nature London 276, 378 (1978).
[Crossref]

Opt. Lett. (6)

Phys. Scr. (1)

M. Aldén, H. Edner, S. Svanberg, “Coherent Anti-Stokes Raman Spectroscopy (CARS) Applied in Combustion Probing,” Phys. Scr. 27, 29 (1983).
[Crossref]

Rev. Sci. Instrum. (1)

L. P. Goss, D. D. Trump, B. G. MacDonald, G. L. Switzer, “10-Hz Coherent Anti-Stokes Raman Spectroscopy Apparatus for Turbulent Combustion Studies,” Rev. Sci. Instrum. 54, 563 (1983).
[Crossref]

Other (2)

S. Kröll, M. Aldén, T. Berglind, R. J. Hall, to be published.

R. J. Hall, A. C. Eckbreth, “Coherent Anti-Stokes Raman Spectroscopy (CARS): Application to Combustion Diagnostics,” in Laser Applications, Vol. 5, J. F. Ready, R. K. Erf, Eds. (Academic, New York, 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Energy-level diagram for generation of rotational CARS spectra using a multiple four-color interaction process.

Fig. 2
Fig. 2

Experimental setup for generation of rotational CARS spectra: DM, dichroic mirror; BS, beam splitter; M, mirror; L, lens; F, cutoff filter; DA, diode array; SHG, second harmonic generator.

Fig. 3
Fig. 3

Single-shot rotational CARS spectrum from O2 at 300 K.

Fig. 4
Fig. 4

Three normalized single-shot spectral distributions for (a) coumarin 500, (b) rhodamine 640, and (c) the rotational CARS background using rhodamine 640.

Fig. 5
Fig. 5

Phase-matching conditions for simultaneous generation of rotational and vibrational CARS spectra.

Fig. 6
Fig. 6

Simultaneously detected vibrational CARS spectrum at 473 nm and rotational CARS and CSRS spectra around 532 nm. The dye laser profile at 607 nm is also shown.

Fig. 7
Fig. 7

Rotational CARS spectra of N2 molecules captured by a single laser pulse using (a) rhodamine 640 and (b) DCM, illustrating the background CARS signal when using the rhodamine dye. The effect of dye laser bandwidth is also apparent.

Fig. 8
Fig. 8

Energy-level diagram for generation of a broadband background CARS signal.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I ( ω g , CARS ) ~ χ ( 3 ) 2 I g 2 I r ,
χ ( 3 ) = j χ j r ,
χ j r ~ N Δ j g j Γ j ( d σ d Ω ) j i [ 1 + i Δ ω j / ( Γ j / 2 ) ] = χ 0 j r ( i 1 + i x ) ,
I ( ω g , CARS ) ~ ( χ 0 r ) 2 1 1 + x 2 ,
Δ j = ( 2 J + 1 ) Q { exp [ - J ( J + 1 ) h c B k T ] - exp [ - ( J + 2 ) ( J + 3 ) h c B k T ] } ,

Metrics