Abstract

Lippmann color holograms are obtained by combining three component holograms recorded in different materials. In this technique, a dichromated gelatin plate coated with laboratory gelatin, is used for the blue and green components, while an 8E75HD plate is used for the red component. Ways to obtain high diffraction efficiency and to control the reconstruction wavelength are discussed for each component hologram. On the basis of these results, a Lippmann color hologram of a diffusely reflected object is recorded, and a satisfactory result is obtained.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. H. Lin, C. V. LoBianco, “Experimental Techniques in Making Multicolor White Light Reconstructed Holograms,” Appl. Opt. 6, 1255 (1967).
    [CrossRef] [PubMed]
  2. M. Noguchi, “Color Reproduction by Multicolor Holograms with White-Light Reconstruction,” Appl. Opt. 12, 496 (1973).
    [CrossRef] [PubMed]
  3. T. Kubota, T. Ose, “Lippmann Color Holograms Recorded in Methylene-Blue-Sensitized Dichromated Gelatin,” Opt. Lett. 4, 289 (1979).
    [CrossRef] [PubMed]
  4. P. Hariharan, “Improved Techniques for Multicolour Reflection Holograms,” J. Opt. Paris 11, 53 (1980).
    [CrossRef]
  5. G. A. Sobolev, O. B. Selov, “Recording Color Reflection Holograms,” Sov. Tech. Phys. Lett. 6, 314 (1980).
  6. D. G. McCauley, C. E. Simpson, W. J. Murbach, “Holographic Optical Element for Visual Display Applications,” Appl. Opt. 12, 232 (1973).
    [CrossRef] [PubMed]
  7. H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
  8. Agfa-Gevaert Technical Information 21.7271, NDT/Holography (1980).
  9. D. J. Cooke, A. A. Ward, “Reflection-Hologram Processing for High Efficiency in Silver-Halide Emulsions,” Appl. Opt. 23, 934 (1984).
    [CrossRef] [PubMed]
  10. B. J. Chang, K. Winick, “Silver-Halide Gelatin Holograms,” Proc. Soc. Photo-Opt. Instrum. Eng. 215, 172 (1980).
  11. B. J. Chang, “Dichromated Gelatin Holograms and Their Applications,” Opt. Eng. 19, 642 (1980).
    [CrossRef]
  12. J. Ruzek, P. Fiala, “Reflection Holographic Portrait,” Opt. Acta 26, 1257 (1979).
    [CrossRef]
  13. P. Hariharan, “Bleached Reflection Holograms,” Opt. Commun. 6, 377 (1972).
    [CrossRef]

1984

1980

P. Hariharan, “Improved Techniques for Multicolour Reflection Holograms,” J. Opt. Paris 11, 53 (1980).
[CrossRef]

G. A. Sobolev, O. B. Selov, “Recording Color Reflection Holograms,” Sov. Tech. Phys. Lett. 6, 314 (1980).

B. J. Chang, K. Winick, “Silver-Halide Gelatin Holograms,” Proc. Soc. Photo-Opt. Instrum. Eng. 215, 172 (1980).

B. J. Chang, “Dichromated Gelatin Holograms and Their Applications,” Opt. Eng. 19, 642 (1980).
[CrossRef]

1979

1973

1972

P. Hariharan, “Bleached Reflection Holograms,” Opt. Commun. 6, 377 (1972).
[CrossRef]

1969

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909 (1969).

1967

Chang, B. J.

B. J. Chang, K. Winick, “Silver-Halide Gelatin Holograms,” Proc. Soc. Photo-Opt. Instrum. Eng. 215, 172 (1980).

B. J. Chang, “Dichromated Gelatin Holograms and Their Applications,” Opt. Eng. 19, 642 (1980).
[CrossRef]

Cooke, D. J.

Fiala, P.

J. Ruzek, P. Fiala, “Reflection Holographic Portrait,” Opt. Acta 26, 1257 (1979).
[CrossRef]

Hariharan, P.

P. Hariharan, “Improved Techniques for Multicolour Reflection Holograms,” J. Opt. Paris 11, 53 (1980).
[CrossRef]

P. Hariharan, “Bleached Reflection Holograms,” Opt. Commun. 6, 377 (1972).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909 (1969).

Kubota, T.

Lin, L. H.

LoBianco, C. V.

McCauley, D. G.

Murbach, W. J.

Noguchi, M.

Ose, T.

Ruzek, J.

J. Ruzek, P. Fiala, “Reflection Holographic Portrait,” Opt. Acta 26, 1257 (1979).
[CrossRef]

Selov, O. B.

G. A. Sobolev, O. B. Selov, “Recording Color Reflection Holograms,” Sov. Tech. Phys. Lett. 6, 314 (1980).

Simpson, C. E.

Sobolev, G. A.

G. A. Sobolev, O. B. Selov, “Recording Color Reflection Holograms,” Sov. Tech. Phys. Lett. 6, 314 (1980).

Ward, A. A.

Winick, K.

B. J. Chang, K. Winick, “Silver-Halide Gelatin Holograms,” Proc. Soc. Photo-Opt. Instrum. Eng. 215, 172 (1980).

Appl. Opt.

Bell Syst. Tech. J.

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909 (1969).

J. Opt. Paris

P. Hariharan, “Improved Techniques for Multicolour Reflection Holograms,” J. Opt. Paris 11, 53 (1980).
[CrossRef]

Opt. Acta

J. Ruzek, P. Fiala, “Reflection Holographic Portrait,” Opt. Acta 26, 1257 (1979).
[CrossRef]

Opt. Commun.

P. Hariharan, “Bleached Reflection Holograms,” Opt. Commun. 6, 377 (1972).
[CrossRef]

Opt. Eng.

B. J. Chang, “Dichromated Gelatin Holograms and Their Applications,” Opt. Eng. 19, 642 (1980).
[CrossRef]

Opt. Lett.

Proc. Soc. Photo-Opt. Instrum. Eng.

B. J. Chang, K. Winick, “Silver-Halide Gelatin Holograms,” Proc. Soc. Photo-Opt. Instrum. Eng. 215, 172 (1980).

Sov. Tech. Phys. Lett.

G. A. Sobolev, O. B. Selov, “Recording Color Reflection Holograms,” Sov. Tech. Phys. Lett. 6, 314 (1980).

Other

Agfa-Gevaert Technical Information 21.7271, NDT/Holography (1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Curves of transmittance vs wavelength of the DCG plate for various concentrations of ammonium dichromate.

Fig. 2
Fig. 2

Diffraction efficiency of a Lippmann hologram recorded in the DCG plate as a function of exposure.

Fig. 3
Fig. 3

Reconstruction wavelength of a Lippmann hologram recorded in the DCG plate as a function of drying time. The influence of heating on the reconstruction wavelength is shown by the dashed curve.

Fig. 4
Fig. 4

Typical example of the wavelength selectivity of a Lippmann hologram. The hologram is double exposed, recorded with 488- and 514.5-nm light.

Fig. 5
Fig. 5

Diffraction efficiency of a Lippmann hologram recorded in the 8E75HD plate as a function of exposure.

Fig. 6
Fig. 6

Reconstruction wavelength of a Lippmann hologram recored in the 8E75HD plate as a function of exposure.

Fig. 7
Fig. 7

Reconstruction wavelength of a Lippmann hologram recorded in the 8E75HD plate as a function of exposure for three processing temperatures.

Fig. 8
Fig. 8

Schematic representation of making a Lippmann color hologram from two different kinds of plate: (a) recording of the DCG plate for blue and green components, (b) recording of the 8E75HD plate for the red component, (c) final color hologram obtained by combining the two plates.

Tables (4)

Tables Icon

Table I Processing Procedure of the DCG Plate

Tables Icon

Table II Exposure Required to Obtain 50% Diffraction Efficiency

Tables Icon

Table III Processing Procedure of the 8E75HD Plate

Tables Icon

Table IV Signal-to-Noise Ratio of Images Reconstructed from Holograms Recorded with DCG and Silver Halide Emulsions

Metrics