Abstract

In testing a holgraphic particle track recording system for the Fermilab 15-ft bubble chamber, it was shown that the peak power of Q-switched laser pulses (~50-ns duration) at the required energy gave rise to boiling during the chamber expansion. A pulse stretching technique is described which was developed to reduce the peak power. Applied to a ruby laser (oscillator and three amplifiers) with a maximum Q-switched output of 30 J, pulses of up to 100-μs duration with coherence up to and exceeding 11 m at 2.5 μs were produced. These pulses were amplified to ~5 J without shape degradation. The considerably increased coherence length will find applications in many fields of pulsed holography, and its use with fiber optics is particularity promising.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Bjelkhagen et al., “Holographic Recording of Cosmic Ray Tracks in BEBC,” Nucl. Instrum. Methods Phys. Res. 227, 437 (1984).
    [CrossRef]
  2. G. Harigel, H. J. Hilke, G. Linser, F. Schenk, “On the Formation of Narrow Bubble Tracks by a Laser Beam in Argon, Nitrogen and Hydrogen Bubble Chambers,” Nucl. Instrum. Methods 188, 517 (1981).
    [CrossRef]
  3. F. H. Poesposoetjipto, E. Hugentobler, “A Study on Bubble Formation in a Bubble Chamber,” Helv. Phys. Acta 43, 203 (1970).
  4. R. C. Stamberg, D. E. Gillespie, “Laser-Stimulated Nucleation in a Bubble Chamber,” J. Appl. Phys. 37, 459 (1966).
    [CrossRef]
  5. H. Bjelkhagen, “Holographic Recording Materials and the Possibility to Increase Their Sensitivity,” CERN/EF 84-7 (Mar.1984) (unpublished).
  6. J. Kilmer, W. M. Smart, Fermilab private communication.
  7. V. A. Arsenev, I. N. Matveev, N. D. Ustinov, “Nanosecond and Microsecond Pulse Generation in Solid-State Lasers,” Kvantovaya Electron Moscow 4, 2309 (1977) [Sov. J. Quantum Electron. 7, 1321 (1977)].
  8. F. R. Marshall, D. L. Roberts, “Use of Electro-Optical Shutters to Stabilize Ruby Laser Operation,” Proc. IRE 50, 2108 (1962).
  9. C. H. Thomas, E. V. Price, “Feedback Control of a Q-Switched Ruby Laser,” IEEE J. Quantum Electron. QE-2, 617 (1966).
    [CrossRef]
  10. V. I. Mishin, “Ruby Laser for Generating Microsecond Light Pulses having a Narrow Spectrum,” Prib. Tekh. Eksp. No. 4181 (1971) [Instrum. Exp. Tech. 14, No. 4, 1163 (1971)].
  11. R. V. Lovberg, E. R. Wooding, M. L. Yeoman, “Pulse Stretching and Shape Control by Compound Feedback in a Q-Switched Ruby Laser,” IEEE J. Quantum Electron. QE-11, 17 (1975).
    [CrossRef]
  12. M. HibbsColumbia U.W. M. SmartFermilab, “Laser Dispersing Lenses for Holography in Large Bubble Chambers,” (1984) (unpublished)
  13. G. Harigel, “Pulse Stretching in a Q-Switched Ruby Laser for Bubble Chamber Holography,” in Proceedings, Photonics Applied to Nuclear Physics: 2, Nucleophot, Strasbourg (1984), CERN 85-10 (1985) 72.
  14. T. E. Hull, W. H. Enright, K. R. Jackson, “User’s Guide for DVERK—A Subroutine for Solving Non-Stiff ODE’s,” Department of Computer Science, U. Toronto, TR 100 (Oct.1976); T. E. Hull, W. H. Enright, K. R. Jackson, “A Theoretical Criterion for Comparing Runge-Kutta Formulas,” Department of Computer Science, U. Toronto, TR 101 (Jan.1977).
  15. H. Bjelkhagen, F. Pouyat, P. Kasper, E. E. Miranda, R. L. Sekulin, W. Venus, L. Walton, “Test of High Resolution Two-Beam Holography in a Model of the Big European Bubble Chamber, BEBC,” Nucl. Instrum. Methods Phys. Res. 220, 300 (1983).
    [CrossRef]
  16. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, New York, 1976).

1984 (1)

H. Bjelkhagen et al., “Holographic Recording of Cosmic Ray Tracks in BEBC,” Nucl. Instrum. Methods Phys. Res. 227, 437 (1984).
[CrossRef]

1983 (1)

H. Bjelkhagen, F. Pouyat, P. Kasper, E. E. Miranda, R. L. Sekulin, W. Venus, L. Walton, “Test of High Resolution Two-Beam Holography in a Model of the Big European Bubble Chamber, BEBC,” Nucl. Instrum. Methods Phys. Res. 220, 300 (1983).
[CrossRef]

1981 (1)

G. Harigel, H. J. Hilke, G. Linser, F. Schenk, “On the Formation of Narrow Bubble Tracks by a Laser Beam in Argon, Nitrogen and Hydrogen Bubble Chambers,” Nucl. Instrum. Methods 188, 517 (1981).
[CrossRef]

1977 (1)

V. A. Arsenev, I. N. Matveev, N. D. Ustinov, “Nanosecond and Microsecond Pulse Generation in Solid-State Lasers,” Kvantovaya Electron Moscow 4, 2309 (1977) [Sov. J. Quantum Electron. 7, 1321 (1977)].

1975 (1)

R. V. Lovberg, E. R. Wooding, M. L. Yeoman, “Pulse Stretching and Shape Control by Compound Feedback in a Q-Switched Ruby Laser,” IEEE J. Quantum Electron. QE-11, 17 (1975).
[CrossRef]

1971 (1)

V. I. Mishin, “Ruby Laser for Generating Microsecond Light Pulses having a Narrow Spectrum,” Prib. Tekh. Eksp. No. 4181 (1971) [Instrum. Exp. Tech. 14, No. 4, 1163 (1971)].

1970 (1)

F. H. Poesposoetjipto, E. Hugentobler, “A Study on Bubble Formation in a Bubble Chamber,” Helv. Phys. Acta 43, 203 (1970).

1966 (2)

R. C. Stamberg, D. E. Gillespie, “Laser-Stimulated Nucleation in a Bubble Chamber,” J. Appl. Phys. 37, 459 (1966).
[CrossRef]

C. H. Thomas, E. V. Price, “Feedback Control of a Q-Switched Ruby Laser,” IEEE J. Quantum Electron. QE-2, 617 (1966).
[CrossRef]

1962 (1)

F. R. Marshall, D. L. Roberts, “Use of Electro-Optical Shutters to Stabilize Ruby Laser Operation,” Proc. IRE 50, 2108 (1962).

Arsenev, V. A.

V. A. Arsenev, I. N. Matveev, N. D. Ustinov, “Nanosecond and Microsecond Pulse Generation in Solid-State Lasers,” Kvantovaya Electron Moscow 4, 2309 (1977) [Sov. J. Quantum Electron. 7, 1321 (1977)].

Bjelkhagen, H.

H. Bjelkhagen et al., “Holographic Recording of Cosmic Ray Tracks in BEBC,” Nucl. Instrum. Methods Phys. Res. 227, 437 (1984).
[CrossRef]

H. Bjelkhagen, F. Pouyat, P. Kasper, E. E. Miranda, R. L. Sekulin, W. Venus, L. Walton, “Test of High Resolution Two-Beam Holography in a Model of the Big European Bubble Chamber, BEBC,” Nucl. Instrum. Methods Phys. Res. 220, 300 (1983).
[CrossRef]

H. Bjelkhagen, “Holographic Recording Materials and the Possibility to Increase Their Sensitivity,” CERN/EF 84-7 (Mar.1984) (unpublished).

Enright, W. H.

T. E. Hull, W. H. Enright, K. R. Jackson, “User’s Guide for DVERK—A Subroutine for Solving Non-Stiff ODE’s,” Department of Computer Science, U. Toronto, TR 100 (Oct.1976); T. E. Hull, W. H. Enright, K. R. Jackson, “A Theoretical Criterion for Comparing Runge-Kutta Formulas,” Department of Computer Science, U. Toronto, TR 101 (Jan.1977).

Gillespie, D. E.

R. C. Stamberg, D. E. Gillespie, “Laser-Stimulated Nucleation in a Bubble Chamber,” J. Appl. Phys. 37, 459 (1966).
[CrossRef]

Harigel, G.

G. Harigel, H. J. Hilke, G. Linser, F. Schenk, “On the Formation of Narrow Bubble Tracks by a Laser Beam in Argon, Nitrogen and Hydrogen Bubble Chambers,” Nucl. Instrum. Methods 188, 517 (1981).
[CrossRef]

G. Harigel, “Pulse Stretching in a Q-Switched Ruby Laser for Bubble Chamber Holography,” in Proceedings, Photonics Applied to Nuclear Physics: 2, Nucleophot, Strasbourg (1984), CERN 85-10 (1985) 72.

Hibbs, M.

M. HibbsColumbia U.W. M. SmartFermilab, “Laser Dispersing Lenses for Holography in Large Bubble Chambers,” (1984) (unpublished)

Hilke, H. J.

G. Harigel, H. J. Hilke, G. Linser, F. Schenk, “On the Formation of Narrow Bubble Tracks by a Laser Beam in Argon, Nitrogen and Hydrogen Bubble Chambers,” Nucl. Instrum. Methods 188, 517 (1981).
[CrossRef]

Hugentobler, E.

F. H. Poesposoetjipto, E. Hugentobler, “A Study on Bubble Formation in a Bubble Chamber,” Helv. Phys. Acta 43, 203 (1970).

Hull, T. E.

T. E. Hull, W. H. Enright, K. R. Jackson, “User’s Guide for DVERK—A Subroutine for Solving Non-Stiff ODE’s,” Department of Computer Science, U. Toronto, TR 100 (Oct.1976); T. E. Hull, W. H. Enright, K. R. Jackson, “A Theoretical Criterion for Comparing Runge-Kutta Formulas,” Department of Computer Science, U. Toronto, TR 101 (Jan.1977).

Jackson, K. R.

T. E. Hull, W. H. Enright, K. R. Jackson, “User’s Guide for DVERK—A Subroutine for Solving Non-Stiff ODE’s,” Department of Computer Science, U. Toronto, TR 100 (Oct.1976); T. E. Hull, W. H. Enright, K. R. Jackson, “A Theoretical Criterion for Comparing Runge-Kutta Formulas,” Department of Computer Science, U. Toronto, TR 101 (Jan.1977).

Kasper, P.

H. Bjelkhagen, F. Pouyat, P. Kasper, E. E. Miranda, R. L. Sekulin, W. Venus, L. Walton, “Test of High Resolution Two-Beam Holography in a Model of the Big European Bubble Chamber, BEBC,” Nucl. Instrum. Methods Phys. Res. 220, 300 (1983).
[CrossRef]

Kilmer, J.

J. Kilmer, W. M. Smart, Fermilab private communication.

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, New York, 1976).

Linser, G.

G. Harigel, H. J. Hilke, G. Linser, F. Schenk, “On the Formation of Narrow Bubble Tracks by a Laser Beam in Argon, Nitrogen and Hydrogen Bubble Chambers,” Nucl. Instrum. Methods 188, 517 (1981).
[CrossRef]

Lovberg, R. V.

R. V. Lovberg, E. R. Wooding, M. L. Yeoman, “Pulse Stretching and Shape Control by Compound Feedback in a Q-Switched Ruby Laser,” IEEE J. Quantum Electron. QE-11, 17 (1975).
[CrossRef]

Marshall, F. R.

F. R. Marshall, D. L. Roberts, “Use of Electro-Optical Shutters to Stabilize Ruby Laser Operation,” Proc. IRE 50, 2108 (1962).

Matveev, I. N.

V. A. Arsenev, I. N. Matveev, N. D. Ustinov, “Nanosecond and Microsecond Pulse Generation in Solid-State Lasers,” Kvantovaya Electron Moscow 4, 2309 (1977) [Sov. J. Quantum Electron. 7, 1321 (1977)].

Miranda, E. E.

H. Bjelkhagen, F. Pouyat, P. Kasper, E. E. Miranda, R. L. Sekulin, W. Venus, L. Walton, “Test of High Resolution Two-Beam Holography in a Model of the Big European Bubble Chamber, BEBC,” Nucl. Instrum. Methods Phys. Res. 220, 300 (1983).
[CrossRef]

Mishin, V. I.

V. I. Mishin, “Ruby Laser for Generating Microsecond Light Pulses having a Narrow Spectrum,” Prib. Tekh. Eksp. No. 4181 (1971) [Instrum. Exp. Tech. 14, No. 4, 1163 (1971)].

Poesposoetjipto, F. H.

F. H. Poesposoetjipto, E. Hugentobler, “A Study on Bubble Formation in a Bubble Chamber,” Helv. Phys. Acta 43, 203 (1970).

Pouyat, F.

H. Bjelkhagen, F. Pouyat, P. Kasper, E. E. Miranda, R. L. Sekulin, W. Venus, L. Walton, “Test of High Resolution Two-Beam Holography in a Model of the Big European Bubble Chamber, BEBC,” Nucl. Instrum. Methods Phys. Res. 220, 300 (1983).
[CrossRef]

Price, E. V.

C. H. Thomas, E. V. Price, “Feedback Control of a Q-Switched Ruby Laser,” IEEE J. Quantum Electron. QE-2, 617 (1966).
[CrossRef]

Roberts, D. L.

F. R. Marshall, D. L. Roberts, “Use of Electro-Optical Shutters to Stabilize Ruby Laser Operation,” Proc. IRE 50, 2108 (1962).

Schenk, F.

G. Harigel, H. J. Hilke, G. Linser, F. Schenk, “On the Formation of Narrow Bubble Tracks by a Laser Beam in Argon, Nitrogen and Hydrogen Bubble Chambers,” Nucl. Instrum. Methods 188, 517 (1981).
[CrossRef]

Sekulin, R. L.

H. Bjelkhagen, F. Pouyat, P. Kasper, E. E. Miranda, R. L. Sekulin, W. Venus, L. Walton, “Test of High Resolution Two-Beam Holography in a Model of the Big European Bubble Chamber, BEBC,” Nucl. Instrum. Methods Phys. Res. 220, 300 (1983).
[CrossRef]

Smart, W. M.

M. HibbsColumbia U.W. M. SmartFermilab, “Laser Dispersing Lenses for Holography in Large Bubble Chambers,” (1984) (unpublished)

J. Kilmer, W. M. Smart, Fermilab private communication.

Stamberg, R. C.

R. C. Stamberg, D. E. Gillespie, “Laser-Stimulated Nucleation in a Bubble Chamber,” J. Appl. Phys. 37, 459 (1966).
[CrossRef]

Thomas, C. H.

C. H. Thomas, E. V. Price, “Feedback Control of a Q-Switched Ruby Laser,” IEEE J. Quantum Electron. QE-2, 617 (1966).
[CrossRef]

Ustinov, N. D.

V. A. Arsenev, I. N. Matveev, N. D. Ustinov, “Nanosecond and Microsecond Pulse Generation in Solid-State Lasers,” Kvantovaya Electron Moscow 4, 2309 (1977) [Sov. J. Quantum Electron. 7, 1321 (1977)].

Venus, W.

H. Bjelkhagen, F. Pouyat, P. Kasper, E. E. Miranda, R. L. Sekulin, W. Venus, L. Walton, “Test of High Resolution Two-Beam Holography in a Model of the Big European Bubble Chamber, BEBC,” Nucl. Instrum. Methods Phys. Res. 220, 300 (1983).
[CrossRef]

Walton, L.

H. Bjelkhagen, F. Pouyat, P. Kasper, E. E. Miranda, R. L. Sekulin, W. Venus, L. Walton, “Test of High Resolution Two-Beam Holography in a Model of the Big European Bubble Chamber, BEBC,” Nucl. Instrum. Methods Phys. Res. 220, 300 (1983).
[CrossRef]

Wooding, E. R.

R. V. Lovberg, E. R. Wooding, M. L. Yeoman, “Pulse Stretching and Shape Control by Compound Feedback in a Q-Switched Ruby Laser,” IEEE J. Quantum Electron. QE-11, 17 (1975).
[CrossRef]

Yeoman, M. L.

R. V. Lovberg, E. R. Wooding, M. L. Yeoman, “Pulse Stretching and Shape Control by Compound Feedback in a Q-Switched Ruby Laser,” IEEE J. Quantum Electron. QE-11, 17 (1975).
[CrossRef]

Helv. Phys. Acta (1)

F. H. Poesposoetjipto, E. Hugentobler, “A Study on Bubble Formation in a Bubble Chamber,” Helv. Phys. Acta 43, 203 (1970).

IEEE J. Quantum Electron. (2)

R. V. Lovberg, E. R. Wooding, M. L. Yeoman, “Pulse Stretching and Shape Control by Compound Feedback in a Q-Switched Ruby Laser,” IEEE J. Quantum Electron. QE-11, 17 (1975).
[CrossRef]

C. H. Thomas, E. V. Price, “Feedback Control of a Q-Switched Ruby Laser,” IEEE J. Quantum Electron. QE-2, 617 (1966).
[CrossRef]

J. Appl. Phys. (1)

R. C. Stamberg, D. E. Gillespie, “Laser-Stimulated Nucleation in a Bubble Chamber,” J. Appl. Phys. 37, 459 (1966).
[CrossRef]

Kvantovaya Electron Moscow (1)

V. A. Arsenev, I. N. Matveev, N. D. Ustinov, “Nanosecond and Microsecond Pulse Generation in Solid-State Lasers,” Kvantovaya Electron Moscow 4, 2309 (1977) [Sov. J. Quantum Electron. 7, 1321 (1977)].

Nucl. Instrum. Methods Phys. Res. (1)

H. Bjelkhagen et al., “Holographic Recording of Cosmic Ray Tracks in BEBC,” Nucl. Instrum. Methods Phys. Res. 227, 437 (1984).
[CrossRef]

Nucl. Instrum. Methods (1)

G. Harigel, H. J. Hilke, G. Linser, F. Schenk, “On the Formation of Narrow Bubble Tracks by a Laser Beam in Argon, Nitrogen and Hydrogen Bubble Chambers,” Nucl. Instrum. Methods 188, 517 (1981).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. (1)

H. Bjelkhagen, F. Pouyat, P. Kasper, E. E. Miranda, R. L. Sekulin, W. Venus, L. Walton, “Test of High Resolution Two-Beam Holography in a Model of the Big European Bubble Chamber, BEBC,” Nucl. Instrum. Methods Phys. Res. 220, 300 (1983).
[CrossRef]

Prib. Tekh. Eksp. (1)

V. I. Mishin, “Ruby Laser for Generating Microsecond Light Pulses having a Narrow Spectrum,” Prib. Tekh. Eksp. No. 4181 (1971) [Instrum. Exp. Tech. 14, No. 4, 1163 (1971)].

Proc. IRE (1)

F. R. Marshall, D. L. Roberts, “Use of Electro-Optical Shutters to Stabilize Ruby Laser Operation,” Proc. IRE 50, 2108 (1962).

Other (6)

H. Bjelkhagen, “Holographic Recording Materials and the Possibility to Increase Their Sensitivity,” CERN/EF 84-7 (Mar.1984) (unpublished).

J. Kilmer, W. M. Smart, Fermilab private communication.

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, New York, 1976).

M. HibbsColumbia U.W. M. SmartFermilab, “Laser Dispersing Lenses for Holography in Large Bubble Chambers,” (1984) (unpublished)

G. Harigel, “Pulse Stretching in a Q-Switched Ruby Laser for Bubble Chamber Holography,” in Proceedings, Photonics Applied to Nuclear Physics: 2, Nucleophot, Strasbourg (1984), CERN 85-10 (1985) 72.

T. E. Hull, W. H. Enright, K. R. Jackson, “User’s Guide for DVERK—A Subroutine for Solving Non-Stiff ODE’s,” Department of Computer Science, U. Toronto, TR 100 (Oct.1976); T. E. Hull, W. H. Enright, K. R. Jackson, “A Theoretical Criterion for Comparing Runge-Kutta Formulas,” Department of Computer Science, U. Toronto, TR 101 (Jan.1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Layout of the korad Oscillator stage with feedback optics and four amplifiers (schematic): OE, output etalon; MS, mode selection aperture; R, ruby rod; PC, Pockels cell; RM, rear mirror; AO, amplifier; M1, M2, M3, mirrors; PD, photodiode, E1, feedback electronics; A1, A2, A3, A4, amplifiers; BE, beam expander.

Fig. 2
Fig. 2

Feedback electronics: FW114A, phototube, KN6B, Krytron: (a) Lovberg circuit, korad Laser, pulse duration, ≤ 2.5 μs; (b) modified circuit, korad Laser, pulse duration, ≤ 5, μs; improved version used initially with JK laser, pulse duration, ≤ 10 μs.

Fig. 3
Fig. 3

Typical stretched pulses obtained with the korad laser with electronic circuit [Fig. 2(a)] 200 ns/div.

Fig. 4
Fig. 4

Laser flux vs time calculated for feedback circuit shown in Fig. 2: (a) with 50-pF stray capacitance; (b) with 20-pF stray capacitance.

Fig. 5
Fig. 5

Layout of the JK laser system 2000, feedback optics, and block diagram of the pulse stretching electronics (schematic): PD, phototube; RM, 80% reflective rear mirror (r = 5 m); PC, Pockels cell; IE, tilted etalons; R ruby oscillator; OM, output mirror; L, focusing lens; SF, spatial filter; A1, A2, A3, amplifiers; BE, beam expander.

Fig. 6
Fig. 6

Pulse stretching and clamping circuit electronics for the JK laser system: upper part, stretching system; lower part, clamping system.

Fig. 7
Fig. 7

Voltage waveform on the two sides of the Pockels cell (10 μs/div): The upper trace is the monotonically decreasing voltage V2 (500 V/div). The initial value of V2 is −1000 V. The lower trace is the feedback voltage V1 (200 V/div).

Fig. 8
Fig. 8

Typical light pulses obtained in the JK laser with the compound feedback and clamping circuit: Vosc, oscillator voltage; VPC, Pockels cell voltage; Vcl clamping circuit voltage; Δ, delay between firing of flashlamp and opening of the Pockels cell.

Fig. 9
Fig. 9

Layout for the holographic measurement of the coherence length (schematic). The small bar perpendicular to the beam serves for checking the high frequency contouring.

Fig. 10
Fig. 10

Replayed holograms of stretched pulses from the JK laser obtained with the setup of Fig. 9. The mark 30 on the Scotchlite bar corresponds to 3-m length: (a) 2.5-μs pulse duration; (b) 10-μs pulse duration.

Fig. 11
Fig. 11

Dependence of coherence length on pulse duration of the stretched pulse obtained with the feedback circuit in the JK laser. ↑ Lower limit on the value of the coherence length. The path difference is limited by laboratory layout as explained in the text.

Fig. 12
Fig. 12

Effect of backreflections (10 μs/div). Upper trace: pulse going into bubble chamber; lower trace: pulse stopped after last amplifier: (a) light output from laser; (b) voltage response of feedback phototube.

Metrics