Abstract

This paper describes optical memory disks which utilize organic dye material for the recording layer. Optical memory disks with cyanine as the organic dye can be fabricated with relative ease by the wet-coating method and are expected to have the possibility of high-density recording. The currently developed dye material exhibits high metallic reflection and absorption capabilities at the laser diode wavelength region. Single-layer-type optical memory disks with the coated dye material were examined. Excellent stability and read–write characteristics have been found satisfactory for practical use.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Itoh et al., “New Organic Dyes Medium for Ablative Optical Recording,” Proc. Soc. Photo-Opt. Instrum. Eng. 420, 332 (1983).
  2. T. Hirose et al., “Write-Once Optical Media using Novel Organic Metal Complex Dyestuff,” in Proceedings, Optical Memory Symposium ’85, Tokyo (Dec.1985), p. 47.
  3. V. B. Jipson et al., “Infrared Dyes for Optical Storage,” J. Vac. Sci. Technol. 18, 105 (1981).
    [CrossRef]
  4. K. Y. Law et al., “Ablative Optical Recording Using Organic Dye-in-Polymer Film,” Appl. Phys. Lett. 36, 884 (1980).
    [CrossRef]
  5. D. B. Howe et al., “Digital Optical Recording in Infrared-Sensitive Organic Polymers,” Proc. Soc. Photo-Opt. Instrum. Eng. 382, 103 (1983).
  6. B. G. Anex et al., “Metallic Reflection from Molecular Crystals,” Rev. Mod. Phys. 32, 446 (1960).
    [CrossRef]
  7. A. E. Bell et al., “Antireflection Structure for Optical Recording,” IEEE J. Quantum Electron. QE-14, 487 (1978).
    [CrossRef]
  8. K. Ogoshi et al., “An Optical Disk Using an Organic Dye Medium,” in Technical Digest, Topical Meeting on Optical Data Storage (Optical Society of America, Washington, DC, 1985), paper WDD2.

1983 (2)

M. Itoh et al., “New Organic Dyes Medium for Ablative Optical Recording,” Proc. Soc. Photo-Opt. Instrum. Eng. 420, 332 (1983).

D. B. Howe et al., “Digital Optical Recording in Infrared-Sensitive Organic Polymers,” Proc. Soc. Photo-Opt. Instrum. Eng. 382, 103 (1983).

1981 (1)

V. B. Jipson et al., “Infrared Dyes for Optical Storage,” J. Vac. Sci. Technol. 18, 105 (1981).
[CrossRef]

1980 (1)

K. Y. Law et al., “Ablative Optical Recording Using Organic Dye-in-Polymer Film,” Appl. Phys. Lett. 36, 884 (1980).
[CrossRef]

1978 (1)

A. E. Bell et al., “Antireflection Structure for Optical Recording,” IEEE J. Quantum Electron. QE-14, 487 (1978).
[CrossRef]

1960 (1)

B. G. Anex et al., “Metallic Reflection from Molecular Crystals,” Rev. Mod. Phys. 32, 446 (1960).
[CrossRef]

Anex, B. G.

B. G. Anex et al., “Metallic Reflection from Molecular Crystals,” Rev. Mod. Phys. 32, 446 (1960).
[CrossRef]

Bell, A. E.

A. E. Bell et al., “Antireflection Structure for Optical Recording,” IEEE J. Quantum Electron. QE-14, 487 (1978).
[CrossRef]

Hirose, T.

T. Hirose et al., “Write-Once Optical Media using Novel Organic Metal Complex Dyestuff,” in Proceedings, Optical Memory Symposium ’85, Tokyo (Dec.1985), p. 47.

Howe, D. B.

D. B. Howe et al., “Digital Optical Recording in Infrared-Sensitive Organic Polymers,” Proc. Soc. Photo-Opt. Instrum. Eng. 382, 103 (1983).

Itoh, M.

M. Itoh et al., “New Organic Dyes Medium for Ablative Optical Recording,” Proc. Soc. Photo-Opt. Instrum. Eng. 420, 332 (1983).

Jipson, V. B.

V. B. Jipson et al., “Infrared Dyes for Optical Storage,” J. Vac. Sci. Technol. 18, 105 (1981).
[CrossRef]

Law, K. Y.

K. Y. Law et al., “Ablative Optical Recording Using Organic Dye-in-Polymer Film,” Appl. Phys. Lett. 36, 884 (1980).
[CrossRef]

Ogoshi, K.

K. Ogoshi et al., “An Optical Disk Using an Organic Dye Medium,” in Technical Digest, Topical Meeting on Optical Data Storage (Optical Society of America, Washington, DC, 1985), paper WDD2.

Appl. Phys. Lett. (1)

K. Y. Law et al., “Ablative Optical Recording Using Organic Dye-in-Polymer Film,” Appl. Phys. Lett. 36, 884 (1980).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. E. Bell et al., “Antireflection Structure for Optical Recording,” IEEE J. Quantum Electron. QE-14, 487 (1978).
[CrossRef]

J. Vac. Sci. Technol. (1)

V. B. Jipson et al., “Infrared Dyes for Optical Storage,” J. Vac. Sci. Technol. 18, 105 (1981).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

D. B. Howe et al., “Digital Optical Recording in Infrared-Sensitive Organic Polymers,” Proc. Soc. Photo-Opt. Instrum. Eng. 382, 103 (1983).

M. Itoh et al., “New Organic Dyes Medium for Ablative Optical Recording,” Proc. Soc. Photo-Opt. Instrum. Eng. 420, 332 (1983).

Rev. Mod. Phys. (1)

B. G. Anex et al., “Metallic Reflection from Molecular Crystals,” Rev. Mod. Phys. 32, 446 (1960).
[CrossRef]

Other (2)

T. Hirose et al., “Write-Once Optical Media using Novel Organic Metal Complex Dyestuff,” in Proceedings, Optical Memory Symposium ’85, Tokyo (Dec.1985), p. 47.

K. Ogoshi et al., “An Optical Disk Using an Organic Dye Medium,” in Technical Digest, Topical Meeting on Optical Data Storage (Optical Society of America, Washington, DC, 1985), paper WDD2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Structure of single-dye layer disk.

Fig. 2
Fig. 2

Absorption and reflection spectra of cyanine dye (solid line, film; dotted line, solution).

Fig. 3
Fig. 3

Optical model of dye film (Z, thickness of the dye).

Fig. 4
Fig. 4

Distribution of incident light energy (medium 1–2–3). Optical constants of media: 1 (substrate = PMMA), N1, = 1.48, K1 = 0; 2 (recording layer = dye), N2 = 2.7, K2 = 1.7; 3 (air), N3 = 1, K3 = 0. Wavelength = 790 nm.

Fig. 5
Fig. 5

Schematic of read–write apparatus.

Fig. 6
Fig. 6

Contrast characteristics.

Fig. 7
Fig. 7

CNR characteristics.

Fig. 8
Fig. 8

Readout signal and bit error rate vs LD recording power.

Fig. 9
Fig. 9

Write power dependence on linear velocity. Wavelength = 790 nm; N.A. = 0.47; *, land; □, groove.

Fig. 10
Fig. 10

Cross section of a pit.

Fig. 11
Fig. 11

SEM micrograph and cross section of series of pits.

Fig. 12
Fig. 12

Typical eye pattern. Minimum pit length: T = 0.95 μm; recording power: 2.25 mW.

Tables (2)

Tables Icon

Table I Read–Write Parameters

Tables Icon

Table II Characteristics of a Single Dye Layer Disk

Metrics