Abstract

This paper describes recent measurements using coherent Doppler lidars operating at a wavelength of 10.6 μm aboard the NASA Ames Convair 990. The purpose of the measurements was to obtain data on the atmospheric wind fields and the distribution of the backscatter coefficient at 10.6 μm. A description of the instruments is provided detailing the modifications incorporated following the 1981 test flights of the systems. The measurement program is outlined, and preliminary results are discussed.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Bilbro, G. Fichtl, D. Fitzjarrald, M. Krause, “Airborne Doppler Lidar Wind Field Measurements,” Bull. Am. Meteorol. Soc. 65, 348 (1984).
    [CrossRef]
  2. C. T. Amirault, C. A. DiMarzio, “Precision Pointing Using a Dual-Wedge Scanner,” Appl. Opt. 24, 1302 (1985).
    [CrossRef] [PubMed]
  3. W. D. Jones, L. Z. Kennedy, J. W. Bilbro, H. B. Jeffreys, “Coherent Focal Volume Mapping of a Continuous Wave CO2 Doppler Lidar,” Appl. Opt. 23, 730 (1984).
    [CrossRef] [PubMed]

1985

1984

J. Bilbro, G. Fichtl, D. Fitzjarrald, M. Krause, “Airborne Doppler Lidar Wind Field Measurements,” Bull. Am. Meteorol. Soc. 65, 348 (1984).
[CrossRef]

W. D. Jones, L. Z. Kennedy, J. W. Bilbro, H. B. Jeffreys, “Coherent Focal Volume Mapping of a Continuous Wave CO2 Doppler Lidar,” Appl. Opt. 23, 730 (1984).
[CrossRef] [PubMed]

Amirault, C. T.

Bilbro, J.

J. Bilbro, G. Fichtl, D. Fitzjarrald, M. Krause, “Airborne Doppler Lidar Wind Field Measurements,” Bull. Am. Meteorol. Soc. 65, 348 (1984).
[CrossRef]

Bilbro, J. W.

DiMarzio, C. A.

Fichtl, G.

J. Bilbro, G. Fichtl, D. Fitzjarrald, M. Krause, “Airborne Doppler Lidar Wind Field Measurements,” Bull. Am. Meteorol. Soc. 65, 348 (1984).
[CrossRef]

Fitzjarrald, D.

J. Bilbro, G. Fichtl, D. Fitzjarrald, M. Krause, “Airborne Doppler Lidar Wind Field Measurements,” Bull. Am. Meteorol. Soc. 65, 348 (1984).
[CrossRef]

Jeffreys, H. B.

Jones, W. D.

Kennedy, L. Z.

Krause, M.

J. Bilbro, G. Fichtl, D. Fitzjarrald, M. Krause, “Airborne Doppler Lidar Wind Field Measurements,” Bull. Am. Meteorol. Soc. 65, 348 (1984).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Pulsed Doppler lidar installed in the CV990.

Fig. 2
Fig. 2

Pulsed Doppler lidar simplified block diagram.

Fig. 3
Fig. 3

Schematic drawing of the wedge scanner.

Fig. 4
Fig. 4

Plot of system sensitivity as a function of range for the pulsed Doppler lidar.

Fig. 5
Fig. 5

Plot of pulsed Doppler lidar system sensitivity for the calibration target.

Fig. 6
Fig. 6

Plot of the minimum detectable backscatter as a function of range for the pulsed Doppler lidar.

Fig. 7
Fig. 7

Beta lidar installed in the CV990.

Fig. 8
Fig. 8

Simplified optical layout of the beta lidar.

Fig. 9
Fig. 9

Plot of signal plus noise as a function of distance from focus for the beta lidar.

Fig. 10
Fig. 10

Carquenez Straits flight pattern.

Fig. 11
Fig. 11

Topography for Carquenez Straits run.

Figure 12
Figure 12

(a) Velocity vs. range, −1 deg. el., 20 deg. forward. (b) Velocity vs. range, −3 deg. forward.

Figure 13
Figure 13

(a) Velocity vs. range, −1 deg. el., 20 deg. aft. (b) Velocity vs. range, −3 deg. aft.

Fig. 14
Fig. 14

Volume backscatter data produced by the beta lidar.

Fig. 15
Fig. 15

Single-particle histogram produced by the beta lidar.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

S N R = η P S ρ ( π ) h ν B ,
S = λ 2 I t I r d A I t d A I r d A ,
η = h ν B S N R P ρ ( π )
10 log ( η ) = 10 log ( h ν B ) - 10 log ( P ) - 10 log [ ρ ( π ) ] + 10 log ( SNR ) - 10 log ( S ) ,
S = 4.365 × 10 - 4 , B = 357 k H z , ρ ( π ) = 0.011 s r , h ν = 1.8752 × 10 - 20 .
SNR = J c τ β ( π ) S 2 h ν ,
β ( π ) = 1.1 × 10 - 18 S .
ρ ( π ) = Δ L β ( π ) ,
β ( π ) = SNR a · P t c · B a · ρ ( π ) SNR c P t a B c Δ L ,

Metrics