Abstract

In several papers, effects of film nonlinearity have been studied considering the off-axis holography. In this analysis, the case of the in-line far-field holography is considered. It is shown that the finite aperture effects influence both the number of extrema in the intensity distribution of an image and the edge smear of this image, while the nonlinearity produces a decrease of the contrast.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Kozma, G. W. Jull, K. O. Hill, “An Analytical and Experimental Study of Nonlinearities in Hologram Recording,” Appl. Opt. 9, 721 (1970).
    [CrossRef] [PubMed]
  2. K. Chalasinska-Macukow, J. Slaby, T. Szoplik, “Comparison of Nonlinear Effects in Amplitude and Phase Holograms Recorded in Photographic Materials,” Opt. Commun. 35, 332 (1980).
    [CrossRef]
  3. J. W. Goodman, G. R. Knight, “Effect of Film Nonlinearities on Wavefront-Reconstruction Images of Diffuse Objects,” J. Opt. Soc. Am. 58, 1276 (1968).
    [CrossRef]
  4. A. A. Friesem, J. S. Zelenka, “Effects of Film Nonlinearities in Holography,” Appl. Opt. 6, 1755 (1967).
    [CrossRef] [PubMed]
  5. J. Upatnieks, C. D. Leonard, “Linear Wavefront Reconstruction from Nonlinearly Recorded Holograms,” Appl. Opt. 10, 2365 (1971).
    [CrossRef] [PubMed]
  6. G. S. Phipps, C. E. Robertson, F. M. Tamashiro, “Reprocessing of Nonoptimally Exposed Holograms,” Appl. Opt. 19, 802 (1980).
    [CrossRef] [PubMed]
  7. H. Royer, “L’utilisation de la microholographie dans les chambres à bulles,” J. Opt. Paris 12, 347 (1981).
    [CrossRef]
  8. C. Ozkul, “Effects of the Finite Aperture on the Linwidth Measurement Using In-line Fraunhofer Holography,” Opt. Laser Technol. 18, 36 (1986).
    [CrossRef]
  9. G. A. Tyler, B. J. Thompson, “Fraunhofer Holography Applied to Particle Size Analysis: A Reassessment,” Opt. Acta. 23, 685 (1976).
    [CrossRef]
  10. R. A. Belz, F. M. Shofner, “Characteristics and Measurements of an Aperture-Limited In-line Hologram Image,” Appl. Opt. 11, 2215 (1972).
    [CrossRef] [PubMed]
  11. D. M. Robinson, “A Calculation of Edge Smear in Far-Field Holography Using a Short-cut Edge Trace Technique,” Appl. Opt. 9, 496 (1970).
    [CrossRef] [PubMed]
  12. C. S. Vikram, M. L. Billet, “In-line Fraunhofer Holography at a Few Far Fields,” Appl. Opt. 23, 3091 (1984).
    [CrossRef] [PubMed]

1986 (1)

C. Ozkul, “Effects of the Finite Aperture on the Linwidth Measurement Using In-line Fraunhofer Holography,” Opt. Laser Technol. 18, 36 (1986).
[CrossRef]

1984 (1)

1981 (1)

H. Royer, “L’utilisation de la microholographie dans les chambres à bulles,” J. Opt. Paris 12, 347 (1981).
[CrossRef]

1980 (2)

K. Chalasinska-Macukow, J. Slaby, T. Szoplik, “Comparison of Nonlinear Effects in Amplitude and Phase Holograms Recorded in Photographic Materials,” Opt. Commun. 35, 332 (1980).
[CrossRef]

G. S. Phipps, C. E. Robertson, F. M. Tamashiro, “Reprocessing of Nonoptimally Exposed Holograms,” Appl. Opt. 19, 802 (1980).
[CrossRef] [PubMed]

1976 (1)

G. A. Tyler, B. J. Thompson, “Fraunhofer Holography Applied to Particle Size Analysis: A Reassessment,” Opt. Acta. 23, 685 (1976).
[CrossRef]

1972 (1)

1971 (1)

1970 (2)

1968 (1)

1967 (1)

Belz, R. A.

Billet, M. L.

Chalasinska-Macukow, K.

K. Chalasinska-Macukow, J. Slaby, T. Szoplik, “Comparison of Nonlinear Effects in Amplitude and Phase Holograms Recorded in Photographic Materials,” Opt. Commun. 35, 332 (1980).
[CrossRef]

Friesem, A. A.

Goodman, J. W.

Hill, K. O.

Jull, G. W.

Knight, G. R.

Kozma, A.

Leonard, C. D.

Ozkul, C.

C. Ozkul, “Effects of the Finite Aperture on the Linwidth Measurement Using In-line Fraunhofer Holography,” Opt. Laser Technol. 18, 36 (1986).
[CrossRef]

Phipps, G. S.

Robertson, C. E.

Robinson, D. M.

Royer, H.

H. Royer, “L’utilisation de la microholographie dans les chambres à bulles,” J. Opt. Paris 12, 347 (1981).
[CrossRef]

Shofner, F. M.

Slaby, J.

K. Chalasinska-Macukow, J. Slaby, T. Szoplik, “Comparison of Nonlinear Effects in Amplitude and Phase Holograms Recorded in Photographic Materials,” Opt. Commun. 35, 332 (1980).
[CrossRef]

Szoplik, T.

K. Chalasinska-Macukow, J. Slaby, T. Szoplik, “Comparison of Nonlinear Effects in Amplitude and Phase Holograms Recorded in Photographic Materials,” Opt. Commun. 35, 332 (1980).
[CrossRef]

Tamashiro, F. M.

Thompson, B. J.

G. A. Tyler, B. J. Thompson, “Fraunhofer Holography Applied to Particle Size Analysis: A Reassessment,” Opt. Acta. 23, 685 (1976).
[CrossRef]

Tyler, G. A.

G. A. Tyler, B. J. Thompson, “Fraunhofer Holography Applied to Particle Size Analysis: A Reassessment,” Opt. Acta. 23, 685 (1976).
[CrossRef]

Upatnieks, J.

Vikram, C. S.

Zelenka, J. S.

Appl. Opt. (7)

J. Opt. Paris (1)

H. Royer, “L’utilisation de la microholographie dans les chambres à bulles,” J. Opt. Paris 12, 347 (1981).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Acta. (1)

G. A. Tyler, B. J. Thompson, “Fraunhofer Holography Applied to Particle Size Analysis: A Reassessment,” Opt. Acta. 23, 685 (1976).
[CrossRef]

Opt. Commun. (1)

K. Chalasinska-Macukow, J. Slaby, T. Szoplik, “Comparison of Nonlinear Effects in Amplitude and Phase Holograms Recorded in Photographic Materials,” Opt. Commun. 35, 332 (1980).
[CrossRef]

Opt. Laser Technol. (1)

C. Ozkul, “Effects of the Finite Aperture on the Linwidth Measurement Using In-line Fraunhofer Holography,” Opt. Laser Technol. 18, 36 (1986).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

The t-E curve of the 10E75 plate.

Fig. 2
Fig. 2

Irradiance in reconstructed image: t0 = 0.25.

Fig. 3
Fig. 3

Irradiance in reconstructed image: t0 = 0.15.

Tables (2)

Tables Icon

Table I Image Contrast as a Function of t0 for Given N and n

Tables Icon

Table II Edge Sharpness as a Function of t0 for Given N and n (Comparable Edge Smear for t0 = 0.43 and 0.25)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

t ( ξ ) = t b = K I ( ξ ) .
A ( x ) = - t 0 exp i π λ z ( x = ξ ) 2 d ξ + - ξ n ξ n [ t b - t 0 - K I ( ξ ) ] exp i π λ z ( x - ξ ) 2 d ξ .
I ( x ) = A ( x ) 2 .

Metrics