Abstract

The 3-D measurement of the gas concentration in a photoacoustically forced gas jet is described. A pulsed laser focused onto a laminar gas flow was used to trigger a localized disturbance which evolved with time. After a fixed time delay, the gas concentration in a 2-D cross section of the jet was measured by recording Rayleigh scattering from a second laser used to illuminate a thin sheet intersecting the flow. A series of these 2-D measurements made at the same time delay resulted in a full 3-D mapping of structures within the flow. Computer graphics enabled the subsequent reconstruction and visualization of the 3-D surfaces of constant concentration as well as the magnitude of the concentration gradient on such surfaces.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Tennekes, J. L. Lumley, A First Course in Turbulence (MIT Press, Cambridge, 1972).
  2. J. D. Fridman, R. M. Huffaker, R. F. Kinnard, “Laser Doppler System Measures Three-Dimensional Vector Velocity and Turbulence,” Laser Focus 4, 34 (1968); K. L. Orloff, S. E. Logan, “Confocal Backscatter Laser Velocimeter with On-Axis Sensitivity,” Appl. Opt. 12, 2477 (1973).
    [CrossRef] [PubMed]
  3. Y. H. E. Sheu, T. P. K. Chang, G. B. Tatterson, D. S. Dickey, “A Three-Dimensional Measurement Technique for Turbulent Flows,” Chem. Eng. Commun. 17, 67 (1982); T. P. Chang, N. A. Wilcox, G. B. Tatterson, “Application of Image Processing to the Analysis of Three-Dimensional Flow Fields,” Opt. Eng. 23, 283 (1984).
    [CrossRef]
  4. H. Royer, “Holographic Velocimetry of Submicron Particles,” Opt. Commun. 20, 73 (1977).
    [CrossRef]
  5. M. B. Long, B. T. Chu, R. K. Chang, “Instantaneous Two-Dimensional Gas Concentration Measurements by Light Scattering,” AIAA J. 19, 1151 (1981); A. J. R. Lysaght, R. W. Bilger, J. H. Kent, “Visualization of Mixing in Turbulent Diffusion Flames,” Combust. Flame 46, 105 (1982).
    [CrossRef]
  6. M. C. Escoda, M. B. Long, “Rayleigh Scattering Measurements of the Gas Concentration Field in Turbulent Jets,” AIAA J. 21, 81 (1983).
    [CrossRef]
  7. D. L. Hartley, “Raman Gas Mixing Experiments and Ramanography,” in Laser Raman Gas Diagnostics, M. Lapp, C. M. Penney, Eds. (Plenum, New York, 1974) p. 311; M. B. Long, D. C. Fourguette, M. C. Escoda, C. B. Layne, “Instantaneous Ramanography of a Turbulent Diffusion Flame,” Opt. Lett. 8, 244 (1983).
    [CrossRef] [PubMed]
  8. M. J. Dyer, D. R. Crosley, “Two-Dimensional Imaging of OH Laser-Induced Fluorescence in a Flame,” Opt. Lett. 7, 382 (1982).
    [CrossRef] [PubMed]
  9. D. C. Fourguette, R. M. Zurn, M. B. Long, “Two-Dimensional Rayleigh Thermometry in a Turbulent Nonpremixed Methane-Hydrogen Flame,” Combust. Sci. Technol. 44, 307 (1985).
    [CrossRef]
  10. J. M. Seitzman, G. Kychakoff, R. K. Hanson, “Instantaneous Temperature Field Measurements Using Planar Laser-Induced Fluorescence,” Opt. Lett. 10, 439 (1985).
    [CrossRef] [PubMed]
  11. B. Yip, M. B. Long, “Instantaneous Planar Measurement of the Complete Three-Dimensional Scalar Gradient in a Turbulent Jet,” Opt. Lett. 11, 64 (1986).
    [CrossRef] [PubMed]
  12. J. Jimenez, M. Cogollos, L. P. Bernal, “A Perspective View of the Plane Mixing Layer,” J. Fluid Mech. 152, 125 (1985).
    [CrossRef]
  13. L. Hesselink, J. Pender, S. M. Jaffey, K. Dutta, “Quantitative Three-Dimensional Flow Visualization,” in Flow Visualization III, W. J. Yang, Ed. (Hemisphere Publishing Corp., Washington, DC, 1985), p. 295.
  14. R. J. Santoro, H. G. Semerjian, P. J. Emmerman, R. Goulard, “Optical Tomography for Flow Field Diagnostics,” Int. J. Heat Mass Transfer 24, 1129 (1981); K. E. Bennett, R. L. Byer, “Optical Tomography: Experimental Verification of Noise Theory,” Opt. Lett. 9, 270 (1984).
    [CrossRef] [PubMed]
  15. J. C. Agui, L. Hesselink, “Three-Dimensional Image Processing for Flow Visualization,” Bull. Am. Phys. Soc. 30, 1728 (1985).
  16. D. C. Fourguette, M. B. Long, “Highly Localized Pressure Perturbations Induced by Laser Absorptive Heating in the Shear Layer of a Gas Jet,” Opt. Lett. 8, 605 (1983).
    [CrossRef] [PubMed]
  17. J. D. Foley, A. Van Dam, Fundamentals of Interactive Computer Graphics (Addison-Wesley, Reading, MA, 1982).
  18. S. B. Pope, Sandia National Laboratories Report SAND85-8814 UC-96 (1985), p. 44.
  19. M. K. Lynch, P. Miller, C. Lewis, D. M. Nosenchuck, “Visualization of Active Turbulent Boundary Layer Control Using a Scanning Laser Sheet,” Bull. Am. Phys. Soc. 30, 1751 (1985).

1986

1985

J. Jimenez, M. Cogollos, L. P. Bernal, “A Perspective View of the Plane Mixing Layer,” J. Fluid Mech. 152, 125 (1985).
[CrossRef]

J. C. Agui, L. Hesselink, “Three-Dimensional Image Processing for Flow Visualization,” Bull. Am. Phys. Soc. 30, 1728 (1985).

M. K. Lynch, P. Miller, C. Lewis, D. M. Nosenchuck, “Visualization of Active Turbulent Boundary Layer Control Using a Scanning Laser Sheet,” Bull. Am. Phys. Soc. 30, 1751 (1985).

D. C. Fourguette, R. M. Zurn, M. B. Long, “Two-Dimensional Rayleigh Thermometry in a Turbulent Nonpremixed Methane-Hydrogen Flame,” Combust. Sci. Technol. 44, 307 (1985).
[CrossRef]

J. M. Seitzman, G. Kychakoff, R. K. Hanson, “Instantaneous Temperature Field Measurements Using Planar Laser-Induced Fluorescence,” Opt. Lett. 10, 439 (1985).
[CrossRef] [PubMed]

1983

M. C. Escoda, M. B. Long, “Rayleigh Scattering Measurements of the Gas Concentration Field in Turbulent Jets,” AIAA J. 21, 81 (1983).
[CrossRef]

D. C. Fourguette, M. B. Long, “Highly Localized Pressure Perturbations Induced by Laser Absorptive Heating in the Shear Layer of a Gas Jet,” Opt. Lett. 8, 605 (1983).
[CrossRef] [PubMed]

1982

M. J. Dyer, D. R. Crosley, “Two-Dimensional Imaging of OH Laser-Induced Fluorescence in a Flame,” Opt. Lett. 7, 382 (1982).
[CrossRef] [PubMed]

Y. H. E. Sheu, T. P. K. Chang, G. B. Tatterson, D. S. Dickey, “A Three-Dimensional Measurement Technique for Turbulent Flows,” Chem. Eng. Commun. 17, 67 (1982); T. P. Chang, N. A. Wilcox, G. B. Tatterson, “Application of Image Processing to the Analysis of Three-Dimensional Flow Fields,” Opt. Eng. 23, 283 (1984).
[CrossRef]

1981

M. B. Long, B. T. Chu, R. K. Chang, “Instantaneous Two-Dimensional Gas Concentration Measurements by Light Scattering,” AIAA J. 19, 1151 (1981); A. J. R. Lysaght, R. W. Bilger, J. H. Kent, “Visualization of Mixing in Turbulent Diffusion Flames,” Combust. Flame 46, 105 (1982).
[CrossRef]

R. J. Santoro, H. G. Semerjian, P. J. Emmerman, R. Goulard, “Optical Tomography for Flow Field Diagnostics,” Int. J. Heat Mass Transfer 24, 1129 (1981); K. E. Bennett, R. L. Byer, “Optical Tomography: Experimental Verification of Noise Theory,” Opt. Lett. 9, 270 (1984).
[CrossRef] [PubMed]

1977

H. Royer, “Holographic Velocimetry of Submicron Particles,” Opt. Commun. 20, 73 (1977).
[CrossRef]

1968

J. D. Fridman, R. M. Huffaker, R. F. Kinnard, “Laser Doppler System Measures Three-Dimensional Vector Velocity and Turbulence,” Laser Focus 4, 34 (1968); K. L. Orloff, S. E. Logan, “Confocal Backscatter Laser Velocimeter with On-Axis Sensitivity,” Appl. Opt. 12, 2477 (1973).
[CrossRef] [PubMed]

Agui, J. C.

J. C. Agui, L. Hesselink, “Three-Dimensional Image Processing for Flow Visualization,” Bull. Am. Phys. Soc. 30, 1728 (1985).

Bernal, L. P.

J. Jimenez, M. Cogollos, L. P. Bernal, “A Perspective View of the Plane Mixing Layer,” J. Fluid Mech. 152, 125 (1985).
[CrossRef]

Chang, R. K.

M. B. Long, B. T. Chu, R. K. Chang, “Instantaneous Two-Dimensional Gas Concentration Measurements by Light Scattering,” AIAA J. 19, 1151 (1981); A. J. R. Lysaght, R. W. Bilger, J. H. Kent, “Visualization of Mixing in Turbulent Diffusion Flames,” Combust. Flame 46, 105 (1982).
[CrossRef]

Chang, T. P. K.

Y. H. E. Sheu, T. P. K. Chang, G. B. Tatterson, D. S. Dickey, “A Three-Dimensional Measurement Technique for Turbulent Flows,” Chem. Eng. Commun. 17, 67 (1982); T. P. Chang, N. A. Wilcox, G. B. Tatterson, “Application of Image Processing to the Analysis of Three-Dimensional Flow Fields,” Opt. Eng. 23, 283 (1984).
[CrossRef]

Chu, B. T.

M. B. Long, B. T. Chu, R. K. Chang, “Instantaneous Two-Dimensional Gas Concentration Measurements by Light Scattering,” AIAA J. 19, 1151 (1981); A. J. R. Lysaght, R. W. Bilger, J. H. Kent, “Visualization of Mixing in Turbulent Diffusion Flames,” Combust. Flame 46, 105 (1982).
[CrossRef]

Cogollos, M.

J. Jimenez, M. Cogollos, L. P. Bernal, “A Perspective View of the Plane Mixing Layer,” J. Fluid Mech. 152, 125 (1985).
[CrossRef]

Crosley, D. R.

Dickey, D. S.

Y. H. E. Sheu, T. P. K. Chang, G. B. Tatterson, D. S. Dickey, “A Three-Dimensional Measurement Technique for Turbulent Flows,” Chem. Eng. Commun. 17, 67 (1982); T. P. Chang, N. A. Wilcox, G. B. Tatterson, “Application of Image Processing to the Analysis of Three-Dimensional Flow Fields,” Opt. Eng. 23, 283 (1984).
[CrossRef]

Dutta, K.

L. Hesselink, J. Pender, S. M. Jaffey, K. Dutta, “Quantitative Three-Dimensional Flow Visualization,” in Flow Visualization III, W. J. Yang, Ed. (Hemisphere Publishing Corp., Washington, DC, 1985), p. 295.

Dyer, M. J.

Emmerman, P. J.

R. J. Santoro, H. G. Semerjian, P. J. Emmerman, R. Goulard, “Optical Tomography for Flow Field Diagnostics,” Int. J. Heat Mass Transfer 24, 1129 (1981); K. E. Bennett, R. L. Byer, “Optical Tomography: Experimental Verification of Noise Theory,” Opt. Lett. 9, 270 (1984).
[CrossRef] [PubMed]

Escoda, M. C.

M. C. Escoda, M. B. Long, “Rayleigh Scattering Measurements of the Gas Concentration Field in Turbulent Jets,” AIAA J. 21, 81 (1983).
[CrossRef]

Foley, J. D.

J. D. Foley, A. Van Dam, Fundamentals of Interactive Computer Graphics (Addison-Wesley, Reading, MA, 1982).

Fourguette, D. C.

D. C. Fourguette, R. M. Zurn, M. B. Long, “Two-Dimensional Rayleigh Thermometry in a Turbulent Nonpremixed Methane-Hydrogen Flame,” Combust. Sci. Technol. 44, 307 (1985).
[CrossRef]

D. C. Fourguette, M. B. Long, “Highly Localized Pressure Perturbations Induced by Laser Absorptive Heating in the Shear Layer of a Gas Jet,” Opt. Lett. 8, 605 (1983).
[CrossRef] [PubMed]

Fridman, J. D.

J. D. Fridman, R. M. Huffaker, R. F. Kinnard, “Laser Doppler System Measures Three-Dimensional Vector Velocity and Turbulence,” Laser Focus 4, 34 (1968); K. L. Orloff, S. E. Logan, “Confocal Backscatter Laser Velocimeter with On-Axis Sensitivity,” Appl. Opt. 12, 2477 (1973).
[CrossRef] [PubMed]

Goulard, R.

R. J. Santoro, H. G. Semerjian, P. J. Emmerman, R. Goulard, “Optical Tomography for Flow Field Diagnostics,” Int. J. Heat Mass Transfer 24, 1129 (1981); K. E. Bennett, R. L. Byer, “Optical Tomography: Experimental Verification of Noise Theory,” Opt. Lett. 9, 270 (1984).
[CrossRef] [PubMed]

Hanson, R. K.

Hartley, D. L.

D. L. Hartley, “Raman Gas Mixing Experiments and Ramanography,” in Laser Raman Gas Diagnostics, M. Lapp, C. M. Penney, Eds. (Plenum, New York, 1974) p. 311; M. B. Long, D. C. Fourguette, M. C. Escoda, C. B. Layne, “Instantaneous Ramanography of a Turbulent Diffusion Flame,” Opt. Lett. 8, 244 (1983).
[CrossRef] [PubMed]

Hesselink, L.

J. C. Agui, L. Hesselink, “Three-Dimensional Image Processing for Flow Visualization,” Bull. Am. Phys. Soc. 30, 1728 (1985).

L. Hesselink, J. Pender, S. M. Jaffey, K. Dutta, “Quantitative Three-Dimensional Flow Visualization,” in Flow Visualization III, W. J. Yang, Ed. (Hemisphere Publishing Corp., Washington, DC, 1985), p. 295.

Huffaker, R. M.

J. D. Fridman, R. M. Huffaker, R. F. Kinnard, “Laser Doppler System Measures Three-Dimensional Vector Velocity and Turbulence,” Laser Focus 4, 34 (1968); K. L. Orloff, S. E. Logan, “Confocal Backscatter Laser Velocimeter with On-Axis Sensitivity,” Appl. Opt. 12, 2477 (1973).
[CrossRef] [PubMed]

Jaffey, S. M.

L. Hesselink, J. Pender, S. M. Jaffey, K. Dutta, “Quantitative Three-Dimensional Flow Visualization,” in Flow Visualization III, W. J. Yang, Ed. (Hemisphere Publishing Corp., Washington, DC, 1985), p. 295.

Jimenez, J.

J. Jimenez, M. Cogollos, L. P. Bernal, “A Perspective View of the Plane Mixing Layer,” J. Fluid Mech. 152, 125 (1985).
[CrossRef]

Kinnard, R. F.

J. D. Fridman, R. M. Huffaker, R. F. Kinnard, “Laser Doppler System Measures Three-Dimensional Vector Velocity and Turbulence,” Laser Focus 4, 34 (1968); K. L. Orloff, S. E. Logan, “Confocal Backscatter Laser Velocimeter with On-Axis Sensitivity,” Appl. Opt. 12, 2477 (1973).
[CrossRef] [PubMed]

Kychakoff, G.

Lewis, C.

M. K. Lynch, P. Miller, C. Lewis, D. M. Nosenchuck, “Visualization of Active Turbulent Boundary Layer Control Using a Scanning Laser Sheet,” Bull. Am. Phys. Soc. 30, 1751 (1985).

Long, M. B.

B. Yip, M. B. Long, “Instantaneous Planar Measurement of the Complete Three-Dimensional Scalar Gradient in a Turbulent Jet,” Opt. Lett. 11, 64 (1986).
[CrossRef] [PubMed]

D. C. Fourguette, R. M. Zurn, M. B. Long, “Two-Dimensional Rayleigh Thermometry in a Turbulent Nonpremixed Methane-Hydrogen Flame,” Combust. Sci. Technol. 44, 307 (1985).
[CrossRef]

M. C. Escoda, M. B. Long, “Rayleigh Scattering Measurements of the Gas Concentration Field in Turbulent Jets,” AIAA J. 21, 81 (1983).
[CrossRef]

D. C. Fourguette, M. B. Long, “Highly Localized Pressure Perturbations Induced by Laser Absorptive Heating in the Shear Layer of a Gas Jet,” Opt. Lett. 8, 605 (1983).
[CrossRef] [PubMed]

M. B. Long, B. T. Chu, R. K. Chang, “Instantaneous Two-Dimensional Gas Concentration Measurements by Light Scattering,” AIAA J. 19, 1151 (1981); A. J. R. Lysaght, R. W. Bilger, J. H. Kent, “Visualization of Mixing in Turbulent Diffusion Flames,” Combust. Flame 46, 105 (1982).
[CrossRef]

Lumley, J. L.

H. Tennekes, J. L. Lumley, A First Course in Turbulence (MIT Press, Cambridge, 1972).

Lynch, M. K.

M. K. Lynch, P. Miller, C. Lewis, D. M. Nosenchuck, “Visualization of Active Turbulent Boundary Layer Control Using a Scanning Laser Sheet,” Bull. Am. Phys. Soc. 30, 1751 (1985).

Miller, P.

M. K. Lynch, P. Miller, C. Lewis, D. M. Nosenchuck, “Visualization of Active Turbulent Boundary Layer Control Using a Scanning Laser Sheet,” Bull. Am. Phys. Soc. 30, 1751 (1985).

Nosenchuck, D. M.

M. K. Lynch, P. Miller, C. Lewis, D. M. Nosenchuck, “Visualization of Active Turbulent Boundary Layer Control Using a Scanning Laser Sheet,” Bull. Am. Phys. Soc. 30, 1751 (1985).

Pender, J.

L. Hesselink, J. Pender, S. M. Jaffey, K. Dutta, “Quantitative Three-Dimensional Flow Visualization,” in Flow Visualization III, W. J. Yang, Ed. (Hemisphere Publishing Corp., Washington, DC, 1985), p. 295.

Pope, S. B.

S. B. Pope, Sandia National Laboratories Report SAND85-8814 UC-96 (1985), p. 44.

Royer, H.

H. Royer, “Holographic Velocimetry of Submicron Particles,” Opt. Commun. 20, 73 (1977).
[CrossRef]

Santoro, R. J.

R. J. Santoro, H. G. Semerjian, P. J. Emmerman, R. Goulard, “Optical Tomography for Flow Field Diagnostics,” Int. J. Heat Mass Transfer 24, 1129 (1981); K. E. Bennett, R. L. Byer, “Optical Tomography: Experimental Verification of Noise Theory,” Opt. Lett. 9, 270 (1984).
[CrossRef] [PubMed]

Seitzman, J. M.

Semerjian, H. G.

R. J. Santoro, H. G. Semerjian, P. J. Emmerman, R. Goulard, “Optical Tomography for Flow Field Diagnostics,” Int. J. Heat Mass Transfer 24, 1129 (1981); K. E. Bennett, R. L. Byer, “Optical Tomography: Experimental Verification of Noise Theory,” Opt. Lett. 9, 270 (1984).
[CrossRef] [PubMed]

Sheu, Y. H. E.

Y. H. E. Sheu, T. P. K. Chang, G. B. Tatterson, D. S. Dickey, “A Three-Dimensional Measurement Technique for Turbulent Flows,” Chem. Eng. Commun. 17, 67 (1982); T. P. Chang, N. A. Wilcox, G. B. Tatterson, “Application of Image Processing to the Analysis of Three-Dimensional Flow Fields,” Opt. Eng. 23, 283 (1984).
[CrossRef]

Tatterson, G. B.

Y. H. E. Sheu, T. P. K. Chang, G. B. Tatterson, D. S. Dickey, “A Three-Dimensional Measurement Technique for Turbulent Flows,” Chem. Eng. Commun. 17, 67 (1982); T. P. Chang, N. A. Wilcox, G. B. Tatterson, “Application of Image Processing to the Analysis of Three-Dimensional Flow Fields,” Opt. Eng. 23, 283 (1984).
[CrossRef]

Tennekes, H.

H. Tennekes, J. L. Lumley, A First Course in Turbulence (MIT Press, Cambridge, 1972).

Van Dam, A.

J. D. Foley, A. Van Dam, Fundamentals of Interactive Computer Graphics (Addison-Wesley, Reading, MA, 1982).

Yip, B.

Zurn, R. M.

D. C. Fourguette, R. M. Zurn, M. B. Long, “Two-Dimensional Rayleigh Thermometry in a Turbulent Nonpremixed Methane-Hydrogen Flame,” Combust. Sci. Technol. 44, 307 (1985).
[CrossRef]

AIAA J.

M. B. Long, B. T. Chu, R. K. Chang, “Instantaneous Two-Dimensional Gas Concentration Measurements by Light Scattering,” AIAA J. 19, 1151 (1981); A. J. R. Lysaght, R. W. Bilger, J. H. Kent, “Visualization of Mixing in Turbulent Diffusion Flames,” Combust. Flame 46, 105 (1982).
[CrossRef]

M. C. Escoda, M. B. Long, “Rayleigh Scattering Measurements of the Gas Concentration Field in Turbulent Jets,” AIAA J. 21, 81 (1983).
[CrossRef]

Bull. Am. Phys. Soc.

J. C. Agui, L. Hesselink, “Three-Dimensional Image Processing for Flow Visualization,” Bull. Am. Phys. Soc. 30, 1728 (1985).

M. K. Lynch, P. Miller, C. Lewis, D. M. Nosenchuck, “Visualization of Active Turbulent Boundary Layer Control Using a Scanning Laser Sheet,” Bull. Am. Phys. Soc. 30, 1751 (1985).

Chem. Eng. Commun.

Y. H. E. Sheu, T. P. K. Chang, G. B. Tatterson, D. S. Dickey, “A Three-Dimensional Measurement Technique for Turbulent Flows,” Chem. Eng. Commun. 17, 67 (1982); T. P. Chang, N. A. Wilcox, G. B. Tatterson, “Application of Image Processing to the Analysis of Three-Dimensional Flow Fields,” Opt. Eng. 23, 283 (1984).
[CrossRef]

Combust. Sci. Technol.

D. C. Fourguette, R. M. Zurn, M. B. Long, “Two-Dimensional Rayleigh Thermometry in a Turbulent Nonpremixed Methane-Hydrogen Flame,” Combust. Sci. Technol. 44, 307 (1985).
[CrossRef]

Int. J. Heat Mass Transfer

R. J. Santoro, H. G. Semerjian, P. J. Emmerman, R. Goulard, “Optical Tomography for Flow Field Diagnostics,” Int. J. Heat Mass Transfer 24, 1129 (1981); K. E. Bennett, R. L. Byer, “Optical Tomography: Experimental Verification of Noise Theory,” Opt. Lett. 9, 270 (1984).
[CrossRef] [PubMed]

J. Fluid Mech.

J. Jimenez, M. Cogollos, L. P. Bernal, “A Perspective View of the Plane Mixing Layer,” J. Fluid Mech. 152, 125 (1985).
[CrossRef]

Laser Focus

J. D. Fridman, R. M. Huffaker, R. F. Kinnard, “Laser Doppler System Measures Three-Dimensional Vector Velocity and Turbulence,” Laser Focus 4, 34 (1968); K. L. Orloff, S. E. Logan, “Confocal Backscatter Laser Velocimeter with On-Axis Sensitivity,” Appl. Opt. 12, 2477 (1973).
[CrossRef] [PubMed]

Opt. Commun.

H. Royer, “Holographic Velocimetry of Submicron Particles,” Opt. Commun. 20, 73 (1977).
[CrossRef]

Opt. Lett.

Other

J. D. Foley, A. Van Dam, Fundamentals of Interactive Computer Graphics (Addison-Wesley, Reading, MA, 1982).

S. B. Pope, Sandia National Laboratories Report SAND85-8814 UC-96 (1985), p. 44.

L. Hesselink, J. Pender, S. M. Jaffey, K. Dutta, “Quantitative Three-Dimensional Flow Visualization,” in Flow Visualization III, W. J. Yang, Ed. (Hemisphere Publishing Corp., Washington, DC, 1985), p. 295.

D. L. Hartley, “Raman Gas Mixing Experiments and Ramanography,” in Laser Raman Gas Diagnostics, M. Lapp, C. M. Penney, Eds. (Plenum, New York, 1974) p. 311; M. B. Long, D. C. Fourguette, M. C. Escoda, C. B. Layne, “Instantaneous Ramanography of a Turbulent Diffusion Flame,” Opt. Lett. 8, 244 (1983).
[CrossRef] [PubMed]

H. Tennekes, J. L. Lumley, A First Course in Turbulence (MIT Press, Cambridge, 1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental configuration for measurement of the 3-D concentration field in a photoacoustically forced jet. A pulsed CO2 laser is focused near the jet nozzle, where absorption by the Freon gas results in a pressure disturbance which propagates downstream to the viewing region, which is illuminated by a frequency-doubled Nd:YAG laser sheet and imaged by a vidicon detector after a fixed time delay. The nozzle is stepped through the illumination plane, and successive slices of the flow are recorded resulting in the 3-D concentration map.

Fig. 2
Fig. 2

Constant jet gas concentration surfaces 6.8 ms after the photoacoustic perturbation. The structure to the right is the 21% Freon concentration surface (i.e., the set of points where the Freon and air mole fractions are 0.21 and 0.79, respectively). The left-hand structure corresponds to 42% Freon and has been removed from the inside of the 21% structure for visibility. (The imaged region covers 4.6 nozzle diameters and is centered 7.1 diameters downstream.) An imaginary light source casts shadows and creates highlights to generate the perception of depth.

Fig. 3
Fig. 3

Constant concentration surfaces 19.6 ms after photoacoustic perturbation. The left- and right-hand structures correspond to Freon gas concentrations of 27 and 18%, respectively, and a smoothing algorithm has been invoked to soften the nodal structure seen in Fig. 2.

Fig. 4
Fig. 4

Constant concentration shell that has been shaded at each point on the surface according to the magnitude of the 3-D concentration gradient. The gray levels are assigned from black, which represents the lowest gradient magnitude, to white, which corresponds to the highest value. The surface is a 30% Freon contour and, as in Fig. 2, was measured 6.8 ms after photoacoustic perturbation.

Metrics