Abstract

Beam profile measurements have been made as a function of time within the laser pulse and C2F5I pressure. Measurements indicate that the profile is determined directly by the optical excitation volume, produced by the solar simulator, and that media distortion plays a minor role compared to the build up of quenching species during the lasing pulse.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. De Young, J. Stripling, T. M. Enderson, D. H. Humes, W. T. Davis, E. J. Conway, Laser and Solar-Photovoltaic Power System Comparison: Part II, in Proceedings, Nineteenth IE-CEC, (Aug.1984), pp. 339–344.
  2. R. H. Frisbee, J. C. Horvath, J. C. Sercel, “Space-Based Laser Propulsion for Orbital Transfer,” JPL D-1919 (Dec.1984).
  3. W. R. Weaver, J. H. Lee, “A Solar-Pumped Gas Laser for the Direct Conversion of Solar Energy,” J. Energy 7, 498 (1983).
    [CrossRef]
  4. R. J. De Young, “Low Threshold Solar-Pumped Iodine Laser,” IEEE J. Quantum Electron. QE-22, 1019 (1986).
    [CrossRef]
  5. R. J. De Young, W. R. Weaver, “Low Threshold Solar-Pumped Laser using C2F5I,” Appl. Phys. Lett. 49, 369 (1986).
    [CrossRef]

1986

R. J. De Young, “Low Threshold Solar-Pumped Iodine Laser,” IEEE J. Quantum Electron. QE-22, 1019 (1986).
[CrossRef]

R. J. De Young, W. R. Weaver, “Low Threshold Solar-Pumped Laser using C2F5I,” Appl. Phys. Lett. 49, 369 (1986).
[CrossRef]

1984

R. H. Frisbee, J. C. Horvath, J. C. Sercel, “Space-Based Laser Propulsion for Orbital Transfer,” JPL D-1919 (Dec.1984).

1983

W. R. Weaver, J. H. Lee, “A Solar-Pumped Gas Laser for the Direct Conversion of Solar Energy,” J. Energy 7, 498 (1983).
[CrossRef]

Conway, E. J.

R. J. De Young, J. Stripling, T. M. Enderson, D. H. Humes, W. T. Davis, E. J. Conway, Laser and Solar-Photovoltaic Power System Comparison: Part II, in Proceedings, Nineteenth IE-CEC, (Aug.1984), pp. 339–344.

Davis, W. T.

R. J. De Young, J. Stripling, T. M. Enderson, D. H. Humes, W. T. Davis, E. J. Conway, Laser and Solar-Photovoltaic Power System Comparison: Part II, in Proceedings, Nineteenth IE-CEC, (Aug.1984), pp. 339–344.

De Young, R. J.

R. J. De Young, “Low Threshold Solar-Pumped Iodine Laser,” IEEE J. Quantum Electron. QE-22, 1019 (1986).
[CrossRef]

R. J. De Young, W. R. Weaver, “Low Threshold Solar-Pumped Laser using C2F5I,” Appl. Phys. Lett. 49, 369 (1986).
[CrossRef]

R. J. De Young, J. Stripling, T. M. Enderson, D. H. Humes, W. T. Davis, E. J. Conway, Laser and Solar-Photovoltaic Power System Comparison: Part II, in Proceedings, Nineteenth IE-CEC, (Aug.1984), pp. 339–344.

Enderson, T. M.

R. J. De Young, J. Stripling, T. M. Enderson, D. H. Humes, W. T. Davis, E. J. Conway, Laser and Solar-Photovoltaic Power System Comparison: Part II, in Proceedings, Nineteenth IE-CEC, (Aug.1984), pp. 339–344.

Frisbee, R. H.

R. H. Frisbee, J. C. Horvath, J. C. Sercel, “Space-Based Laser Propulsion for Orbital Transfer,” JPL D-1919 (Dec.1984).

Horvath, J. C.

R. H. Frisbee, J. C. Horvath, J. C. Sercel, “Space-Based Laser Propulsion for Orbital Transfer,” JPL D-1919 (Dec.1984).

Humes, D. H.

R. J. De Young, J. Stripling, T. M. Enderson, D. H. Humes, W. T. Davis, E. J. Conway, Laser and Solar-Photovoltaic Power System Comparison: Part II, in Proceedings, Nineteenth IE-CEC, (Aug.1984), pp. 339–344.

Lee, J. H.

W. R. Weaver, J. H. Lee, “A Solar-Pumped Gas Laser for the Direct Conversion of Solar Energy,” J. Energy 7, 498 (1983).
[CrossRef]

Sercel, J. C.

R. H. Frisbee, J. C. Horvath, J. C. Sercel, “Space-Based Laser Propulsion for Orbital Transfer,” JPL D-1919 (Dec.1984).

Stripling, J.

R. J. De Young, J. Stripling, T. M. Enderson, D. H. Humes, W. T. Davis, E. J. Conway, Laser and Solar-Photovoltaic Power System Comparison: Part II, in Proceedings, Nineteenth IE-CEC, (Aug.1984), pp. 339–344.

Weaver, W. R.

R. J. De Young, W. R. Weaver, “Low Threshold Solar-Pumped Laser using C2F5I,” Appl. Phys. Lett. 49, 369 (1986).
[CrossRef]

W. R. Weaver, J. H. Lee, “A Solar-Pumped Gas Laser for the Direct Conversion of Solar Energy,” J. Energy 7, 498 (1983).
[CrossRef]

Appl. Phys. Lett.

R. J. De Young, W. R. Weaver, “Low Threshold Solar-Pumped Laser using C2F5I,” Appl. Phys. Lett. 49, 369 (1986).
[CrossRef]

IEEE J. Quantum Electron.

R. J. De Young, “Low Threshold Solar-Pumped Iodine Laser,” IEEE J. Quantum Electron. QE-22, 1019 (1986).
[CrossRef]

J. Energy

W. R. Weaver, J. H. Lee, “A Solar-Pumped Gas Laser for the Direct Conversion of Solar Energy,” J. Energy 7, 498 (1983).
[CrossRef]

JPL D-1919

R. H. Frisbee, J. C. Horvath, J. C. Sercel, “Space-Based Laser Propulsion for Orbital Transfer,” JPL D-1919 (Dec.1984).

Other

R. J. De Young, J. Stripling, T. M. Enderson, D. H. Humes, W. T. Davis, E. J. Conway, Laser and Solar-Photovoltaic Power System Comparison: Part II, in Proceedings, Nineteenth IE-CEC, (Aug.1984), pp. 339–344.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental configuration showing two solar simulators illuminating the box laser cell.

Fig. 2
Fig. 2

Side view of the laser cell showing the input solar simulator illumination pattern.

Fig. 3
Fig. 3

Typical beam profile measurements from the vidicon. Upper photograph taken directly from the TV monitor and lower photograph from the isometric imaging display. The aperture at the output mirror had 5-mm markings to aid in measuring the laser beam profile.

Fig. 4
Fig. 4

Upper photograph shows the laser and silicon vidicon output as well as the solar simulator input. The lower photograph shows the laser beam profile as a function of time: 7.3-kW optical input; 15-Torr C2F5I. 85% output mirror.

Fig. 5
Fig. 5

Upper photograph shows the laser and silicon vidicon outputs as well as the solar simulator input. Lower photograph shows the laser beam profile as a function of time: 7.3-kW optical input; 9-Torr C2F5I. 85% output mirror.

Fig. 6
Fig. 6

Upper photograph shows the laser and silicon vidicon outputs as well as the solar simulator input. Lower photograph shows the laser beam profile as a function of time: 7.3-kW optical input; 3-Torr C2F5I 85% output mirror.

Fig. 7
Fig. 7

Laser energy and average power are shown as a function of C2F5I pressure using an 85% output mirror.

Fig. 8
Fig. 8

Laser cavity was unfolded to an equivalent linear geometry. Superimposed are actual burn patterns produced by the solar simulator. The top and bottom of the measured 1.5-cm beam height are shown.

Fig. 9
Fig. 9

Schematic representation of a space laser based on the present optical cavity design.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

w ( Z 1 ) = w 0 [ 1 + ( Z 1 Z 0 ) 2 ] 1 / 2 ,

Metrics