Abstract

The majority of models developed to describe the actively mode-locked operation of diode lasers have been generated for diodes having one antireflection coated facet. The basic starting point of such models is the assumption that the residual facet reflectivity can be ignored. In the present paper, we employ a model developed specifically to deal with mode-locked operation for diodes with a significant facet reflectivity. Experimental observation of mode-locked operation for different facet reflectivities shows that the model provides a good description of this mode of operation. It is to be emphasized that the comparison between model predictions and experimental observations is basically exact; no fitting parameters are used, and the significant diode parameters are independently measured. This model, thus validated, is used to explore how low the residual facet reflectivity needs to be to be treated as negligible. It is shown that, even for very low values, this facet reflectivity has a strong influence on the dynamical behavior of the mode-locked diode laser.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Goodwin, “Diode Laser Dynamics,” Ph.D. Thesis, McMaster U., Hamilton, Ontario (1983).
  2. J. C. Goodwin, B. K. Garside, “Modulation Detuning Characteristics of Actively Mode-locked Diode Lasers,” IEEE J. Quantum Electron. QE-19, 1068 (1983).
    [CrossRef]
  3. J. P. van der Ziel, “Active Mode-locking of Double Heterostructure Lasers in an External Cavity,” J. Appl. Phys. 52, 4435 (1981).
    [CrossRef]
  4. R. P. Salathe, “Diode Lasers Coupled to External Resonators,” Appl. Phys. 20, 1 (1979).
    [CrossRef]
  5. P. T. Ho, L. A. Glasser, E. P. Ippen, H. A. Haus, “Picosecond Pulse Generation with a CW GaAlAs Laser Diode,” Appl. Phys. Lett. 33, 241 (1978).
    [CrossRef]
  6. H. A. Haus, “Modelocking of Semiconductor Laser Diodes,” Jpn. J. Appl. Phys. 20, 1007 (1981).
    [CrossRef]
  7. M. B. Holbrook, W. E. Sleat, D. J. Bradley, “Bandwidth Limited Picosecond Pulse Generation in an Actively Mode Locked GaAlAs Diode Laser,” Appl. Phys. Lett. 37, 59 (1980).
    [CrossRef]
  8. Optoelectronics, Inc., model PD-30.
  9. Optoelectronics, Inc., model SE-10.
  10. B. W. Hakki, T. Paoli, “Gain Spectra in GaAs Double-Heterostructure Injection Lasers,” J. Appl. Phys. 46, 1290 (1975).
    [CrossRef]
  11. P. H. G. Kempf, “External Feedback Operation of Semiconductor Lasers,” M. Eng. Thesis (1984).
  12. J. C. Goodwin, B. K. Garside, “Threshold Variations in Diode Lasers Induced by External Resonator Feedback,” IEEE J. Quantum Electron, QE-19, 1492 (1983).
    [CrossRef]
  13. J. H. Osmundsen, N. Gade, “Influence of Optical Feedback on Laser Frequency Spectrum and Threshold Conditions,” IEEE J. Quantum Electron. QE-19, 465 (1983).
    [CrossRef]

1983

J. C. Goodwin, B. K. Garside, “Modulation Detuning Characteristics of Actively Mode-locked Diode Lasers,” IEEE J. Quantum Electron. QE-19, 1068 (1983).
[CrossRef]

J. C. Goodwin, B. K. Garside, “Threshold Variations in Diode Lasers Induced by External Resonator Feedback,” IEEE J. Quantum Electron, QE-19, 1492 (1983).
[CrossRef]

J. H. Osmundsen, N. Gade, “Influence of Optical Feedback on Laser Frequency Spectrum and Threshold Conditions,” IEEE J. Quantum Electron. QE-19, 465 (1983).
[CrossRef]

1981

H. A. Haus, “Modelocking of Semiconductor Laser Diodes,” Jpn. J. Appl. Phys. 20, 1007 (1981).
[CrossRef]

J. P. van der Ziel, “Active Mode-locking of Double Heterostructure Lasers in an External Cavity,” J. Appl. Phys. 52, 4435 (1981).
[CrossRef]

1980

M. B. Holbrook, W. E. Sleat, D. J. Bradley, “Bandwidth Limited Picosecond Pulse Generation in an Actively Mode Locked GaAlAs Diode Laser,” Appl. Phys. Lett. 37, 59 (1980).
[CrossRef]

1979

R. P. Salathe, “Diode Lasers Coupled to External Resonators,” Appl. Phys. 20, 1 (1979).
[CrossRef]

1978

P. T. Ho, L. A. Glasser, E. P. Ippen, H. A. Haus, “Picosecond Pulse Generation with a CW GaAlAs Laser Diode,” Appl. Phys. Lett. 33, 241 (1978).
[CrossRef]

1975

B. W. Hakki, T. Paoli, “Gain Spectra in GaAs Double-Heterostructure Injection Lasers,” J. Appl. Phys. 46, 1290 (1975).
[CrossRef]

Bradley, D. J.

M. B. Holbrook, W. E. Sleat, D. J. Bradley, “Bandwidth Limited Picosecond Pulse Generation in an Actively Mode Locked GaAlAs Diode Laser,” Appl. Phys. Lett. 37, 59 (1980).
[CrossRef]

Gade, N.

J. H. Osmundsen, N. Gade, “Influence of Optical Feedback on Laser Frequency Spectrum and Threshold Conditions,” IEEE J. Quantum Electron. QE-19, 465 (1983).
[CrossRef]

Garside, B. K.

J. C. Goodwin, B. K. Garside, “Threshold Variations in Diode Lasers Induced by External Resonator Feedback,” IEEE J. Quantum Electron, QE-19, 1492 (1983).
[CrossRef]

J. C. Goodwin, B. K. Garside, “Modulation Detuning Characteristics of Actively Mode-locked Diode Lasers,” IEEE J. Quantum Electron. QE-19, 1068 (1983).
[CrossRef]

Glasser, L. A.

P. T. Ho, L. A. Glasser, E. P. Ippen, H. A. Haus, “Picosecond Pulse Generation with a CW GaAlAs Laser Diode,” Appl. Phys. Lett. 33, 241 (1978).
[CrossRef]

Goodwin, J. C.

J. C. Goodwin, B. K. Garside, “Threshold Variations in Diode Lasers Induced by External Resonator Feedback,” IEEE J. Quantum Electron, QE-19, 1492 (1983).
[CrossRef]

J. C. Goodwin, B. K. Garside, “Modulation Detuning Characteristics of Actively Mode-locked Diode Lasers,” IEEE J. Quantum Electron. QE-19, 1068 (1983).
[CrossRef]

J. C. Goodwin, “Diode Laser Dynamics,” Ph.D. Thesis, McMaster U., Hamilton, Ontario (1983).

Hakki, B. W.

B. W. Hakki, T. Paoli, “Gain Spectra in GaAs Double-Heterostructure Injection Lasers,” J. Appl. Phys. 46, 1290 (1975).
[CrossRef]

Haus, H. A.

H. A. Haus, “Modelocking of Semiconductor Laser Diodes,” Jpn. J. Appl. Phys. 20, 1007 (1981).
[CrossRef]

P. T. Ho, L. A. Glasser, E. P. Ippen, H. A. Haus, “Picosecond Pulse Generation with a CW GaAlAs Laser Diode,” Appl. Phys. Lett. 33, 241 (1978).
[CrossRef]

Ho, P. T.

P. T. Ho, L. A. Glasser, E. P. Ippen, H. A. Haus, “Picosecond Pulse Generation with a CW GaAlAs Laser Diode,” Appl. Phys. Lett. 33, 241 (1978).
[CrossRef]

Holbrook, M. B.

M. B. Holbrook, W. E. Sleat, D. J. Bradley, “Bandwidth Limited Picosecond Pulse Generation in an Actively Mode Locked GaAlAs Diode Laser,” Appl. Phys. Lett. 37, 59 (1980).
[CrossRef]

Ippen, E. P.

P. T. Ho, L. A. Glasser, E. P. Ippen, H. A. Haus, “Picosecond Pulse Generation with a CW GaAlAs Laser Diode,” Appl. Phys. Lett. 33, 241 (1978).
[CrossRef]

Kempf, P. H. G.

P. H. G. Kempf, “External Feedback Operation of Semiconductor Lasers,” M. Eng. Thesis (1984).

Osmundsen, J. H.

J. H. Osmundsen, N. Gade, “Influence of Optical Feedback on Laser Frequency Spectrum and Threshold Conditions,” IEEE J. Quantum Electron. QE-19, 465 (1983).
[CrossRef]

Paoli, T.

B. W. Hakki, T. Paoli, “Gain Spectra in GaAs Double-Heterostructure Injection Lasers,” J. Appl. Phys. 46, 1290 (1975).
[CrossRef]

Salathe, R. P.

R. P. Salathe, “Diode Lasers Coupled to External Resonators,” Appl. Phys. 20, 1 (1979).
[CrossRef]

Sleat, W. E.

M. B. Holbrook, W. E. Sleat, D. J. Bradley, “Bandwidth Limited Picosecond Pulse Generation in an Actively Mode Locked GaAlAs Diode Laser,” Appl. Phys. Lett. 37, 59 (1980).
[CrossRef]

van der Ziel, J. P.

J. P. van der Ziel, “Active Mode-locking of Double Heterostructure Lasers in an External Cavity,” J. Appl. Phys. 52, 4435 (1981).
[CrossRef]

Appl. Phys.

R. P. Salathe, “Diode Lasers Coupled to External Resonators,” Appl. Phys. 20, 1 (1979).
[CrossRef]

Appl. Phys. Lett.

P. T. Ho, L. A. Glasser, E. P. Ippen, H. A. Haus, “Picosecond Pulse Generation with a CW GaAlAs Laser Diode,” Appl. Phys. Lett. 33, 241 (1978).
[CrossRef]

M. B. Holbrook, W. E. Sleat, D. J. Bradley, “Bandwidth Limited Picosecond Pulse Generation in an Actively Mode Locked GaAlAs Diode Laser,” Appl. Phys. Lett. 37, 59 (1980).
[CrossRef]

IEEE J. Quantum Electron

J. C. Goodwin, B. K. Garside, “Threshold Variations in Diode Lasers Induced by External Resonator Feedback,” IEEE J. Quantum Electron, QE-19, 1492 (1983).
[CrossRef]

IEEE J. Quantum Electron.

J. H. Osmundsen, N. Gade, “Influence of Optical Feedback on Laser Frequency Spectrum and Threshold Conditions,” IEEE J. Quantum Electron. QE-19, 465 (1983).
[CrossRef]

J. C. Goodwin, B. K. Garside, “Modulation Detuning Characteristics of Actively Mode-locked Diode Lasers,” IEEE J. Quantum Electron. QE-19, 1068 (1983).
[CrossRef]

J. Appl. Phys.

J. P. van der Ziel, “Active Mode-locking of Double Heterostructure Lasers in an External Cavity,” J. Appl. Phys. 52, 4435 (1981).
[CrossRef]

B. W. Hakki, T. Paoli, “Gain Spectra in GaAs Double-Heterostructure Injection Lasers,” J. Appl. Phys. 46, 1290 (1975).
[CrossRef]

Jpn. J. Appl. Phys.

H. A. Haus, “Modelocking of Semiconductor Laser Diodes,” Jpn. J. Appl. Phys. 20, 1007 (1981).
[CrossRef]

Other

P. H. G. Kempf, “External Feedback Operation of Semiconductor Lasers,” M. Eng. Thesis (1984).

Optoelectronics, Inc., model PD-30.

Optoelectronics, Inc., model SE-10.

J. C. Goodwin, “Diode Laser Dynamics,” Ph.D. Thesis, McMaster U., Hamilton, Ontario (1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of experimental setup.

Fig. 2
Fig. 2

Experimental tuning characteristics for full feedback (Idc = 1.076Ith, imod = 4%): (a) pulse FWHM; (b) shift in pulse position relative to the modulation waveform.

Fig. 3
Fig. 3

Simulated tuning characteristics for full feedback. (Idc = 1.076 Ith, imod = 4.0%): (a) pulse FWHM; (b) shift in the pulse position relative to the modulation waveform.

Fig. 4
Fig. 4

Experimental and simulated tuning width for three levels of feedback.

Fig. 5
Fig. 5

Rate of change of the pulse position relative to the modulation waveform for full feedback and two reduced feedback cases.

Fig. 6
Fig. 6

Simulated rate of change of pulse position relative to the current modulation for several values of chip facet reflectivity.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d N d t = J e d - N τ s - i A ( σ i N - N Z ) S i ,
d S j d t = C j N τ s + [ A ( σ j N - N Z ) - α - Γ ] S j + K S j ( t - T R ) ,
S ( t ) = m = - S m exp ( i m ω t ) ;
N ( t ) = p = - N p exp ( i p ω t ) .

Metrics