Abstract

The halfwidth of the P(16) CO2 laser transition has been measured over a temperature range from 373 to 620 K at pressures varying from 20 to 100 Torr. A Voigt profile line shape was fitted to the experimental absorption coefficient to determine the variation of halfwidth with temperature. The pressure broadened halfwidth varied as T−0.56 over this temperature range.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Ely, T. K. McCubbin, “The Temperature Dependence the Self-broadened Half-width of the P-20 Line in the 001–100 Band of CO2,” Appl. Opt. 9, 1230 (1970).
    [CrossRef] [PubMed]
  2. A. R. Strilchuk, A. A. Offenberger, “High Temperature Absorption in CO2 at 10.6 μm,” Appl. Opt. 13, 2643 (1974).
    [CrossRef] [PubMed]
  3. R. I. Soloukin, N. A. Fomin, “Resonance CO2 Absorption (10.6μ) Behind a Shock Front,” Zh. Prikl. Mekh. Tekh. Fiz. 18, 42 (1977) [J. Appl. Mech. Tech. Phys. 18, 34 (1977)].
  4. A. M. Robinson, J. S. Weiss, “Temperature Dependance of the Linewidth of the CO2 Laser Transitions,” Can. J. Phys. 58, 512 (1980).
    [CrossRef]
  5. R. S. Eng, A. W. Mantz, “Tunable Diode Laser Spectroscopy of CO2 in the 10- to 15-μm Spectral Region-Lineshape and Q-band Head Absorption Profile,” J. Mol. Spectrosc. 74, 331 (1979).
    [CrossRef]
  6. A. M. Robinson, N. Sutton, “High-Temperature Absorption in the 10.4 μm Band of CO2,” Appl. Opt. 18, 378 (1979).
    [CrossRef] [PubMed]
  7. S. R. Drayson, “Rapid Computation of the Voigt Profile,” J. Quant. Spectrosc. Radiat. Transfer 16, 611 (1976).
    [CrossRef]
  8. K. Khazanie, Elementary Statistics in a World of Applications (Goodyear, Los Angeles, 1979), pp. 374–383.
  9. R. K. Brimacombe, J. Reid, “Accurate Measurements of Pressure-Broadened Linewidths in a Transversely Excited CO2 Discharge,” IEEE J. Quantum Electron. QE-19, 1668 (1983).
    [CrossRef]
  10. R. L. Abrams, “Broadening Coefficients for the P(20) CO2 Laser Transition,” Appl. Phys. Lett. 25, 609 (1974).
    [CrossRef]

1983 (1)

R. K. Brimacombe, J. Reid, “Accurate Measurements of Pressure-Broadened Linewidths in a Transversely Excited CO2 Discharge,” IEEE J. Quantum Electron. QE-19, 1668 (1983).
[CrossRef]

1980 (1)

A. M. Robinson, J. S. Weiss, “Temperature Dependance of the Linewidth of the CO2 Laser Transitions,” Can. J. Phys. 58, 512 (1980).
[CrossRef]

1979 (2)

R. S. Eng, A. W. Mantz, “Tunable Diode Laser Spectroscopy of CO2 in the 10- to 15-μm Spectral Region-Lineshape and Q-band Head Absorption Profile,” J. Mol. Spectrosc. 74, 331 (1979).
[CrossRef]

A. M. Robinson, N. Sutton, “High-Temperature Absorption in the 10.4 μm Band of CO2,” Appl. Opt. 18, 378 (1979).
[CrossRef] [PubMed]

1977 (1)

R. I. Soloukin, N. A. Fomin, “Resonance CO2 Absorption (10.6μ) Behind a Shock Front,” Zh. Prikl. Mekh. Tekh. Fiz. 18, 42 (1977) [J. Appl. Mech. Tech. Phys. 18, 34 (1977)].

1976 (1)

S. R. Drayson, “Rapid Computation of the Voigt Profile,” J. Quant. Spectrosc. Radiat. Transfer 16, 611 (1976).
[CrossRef]

1974 (2)

R. L. Abrams, “Broadening Coefficients for the P(20) CO2 Laser Transition,” Appl. Phys. Lett. 25, 609 (1974).
[CrossRef]

A. R. Strilchuk, A. A. Offenberger, “High Temperature Absorption in CO2 at 10.6 μm,” Appl. Opt. 13, 2643 (1974).
[CrossRef] [PubMed]

1970 (1)

Abrams, R. L.

R. L. Abrams, “Broadening Coefficients for the P(20) CO2 Laser Transition,” Appl. Phys. Lett. 25, 609 (1974).
[CrossRef]

Brimacombe, R. K.

R. K. Brimacombe, J. Reid, “Accurate Measurements of Pressure-Broadened Linewidths in a Transversely Excited CO2 Discharge,” IEEE J. Quantum Electron. QE-19, 1668 (1983).
[CrossRef]

Drayson, S. R.

S. R. Drayson, “Rapid Computation of the Voigt Profile,” J. Quant. Spectrosc. Radiat. Transfer 16, 611 (1976).
[CrossRef]

Ely, R.

Eng, R. S.

R. S. Eng, A. W. Mantz, “Tunable Diode Laser Spectroscopy of CO2 in the 10- to 15-μm Spectral Region-Lineshape and Q-band Head Absorption Profile,” J. Mol. Spectrosc. 74, 331 (1979).
[CrossRef]

Fomin, N. A.

R. I. Soloukin, N. A. Fomin, “Resonance CO2 Absorption (10.6μ) Behind a Shock Front,” Zh. Prikl. Mekh. Tekh. Fiz. 18, 42 (1977) [J. Appl. Mech. Tech. Phys. 18, 34 (1977)].

Khazanie, K.

K. Khazanie, Elementary Statistics in a World of Applications (Goodyear, Los Angeles, 1979), pp. 374–383.

Mantz, A. W.

R. S. Eng, A. W. Mantz, “Tunable Diode Laser Spectroscopy of CO2 in the 10- to 15-μm Spectral Region-Lineshape and Q-band Head Absorption Profile,” J. Mol. Spectrosc. 74, 331 (1979).
[CrossRef]

McCubbin, T. K.

Offenberger, A. A.

Reid, J.

R. K. Brimacombe, J. Reid, “Accurate Measurements of Pressure-Broadened Linewidths in a Transversely Excited CO2 Discharge,” IEEE J. Quantum Electron. QE-19, 1668 (1983).
[CrossRef]

Robinson, A. M.

A. M. Robinson, J. S. Weiss, “Temperature Dependance of the Linewidth of the CO2 Laser Transitions,” Can. J. Phys. 58, 512 (1980).
[CrossRef]

A. M. Robinson, N. Sutton, “High-Temperature Absorption in the 10.4 μm Band of CO2,” Appl. Opt. 18, 378 (1979).
[CrossRef] [PubMed]

Soloukin, R. I.

R. I. Soloukin, N. A. Fomin, “Resonance CO2 Absorption (10.6μ) Behind a Shock Front,” Zh. Prikl. Mekh. Tekh. Fiz. 18, 42 (1977) [J. Appl. Mech. Tech. Phys. 18, 34 (1977)].

Strilchuk, A. R.

Sutton, N.

Weiss, J. S.

A. M. Robinson, J. S. Weiss, “Temperature Dependance of the Linewidth of the CO2 Laser Transitions,” Can. J. Phys. 58, 512 (1980).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

R. L. Abrams, “Broadening Coefficients for the P(20) CO2 Laser Transition,” Appl. Phys. Lett. 25, 609 (1974).
[CrossRef]

Can. J. Phys. (1)

A. M. Robinson, J. S. Weiss, “Temperature Dependance of the Linewidth of the CO2 Laser Transitions,” Can. J. Phys. 58, 512 (1980).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. K. Brimacombe, J. Reid, “Accurate Measurements of Pressure-Broadened Linewidths in a Transversely Excited CO2 Discharge,” IEEE J. Quantum Electron. QE-19, 1668 (1983).
[CrossRef]

J. Mol. Spectrosc. (1)

R. S. Eng, A. W. Mantz, “Tunable Diode Laser Spectroscopy of CO2 in the 10- to 15-μm Spectral Region-Lineshape and Q-band Head Absorption Profile,” J. Mol. Spectrosc. 74, 331 (1979).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

S. R. Drayson, “Rapid Computation of the Voigt Profile,” J. Quant. Spectrosc. Radiat. Transfer 16, 611 (1976).
[CrossRef]

Zh. Prikl. Mekh. Tekh. Fiz. (1)

R. I. Soloukin, N. A. Fomin, “Resonance CO2 Absorption (10.6μ) Behind a Shock Front,” Zh. Prikl. Mekh. Tekh. Fiz. 18, 42 (1977) [J. Appl. Mech. Tech. Phys. 18, 34 (1977)].

Other (1)

K. Khazanie, Elementary Statistics in a World of Applications (Goodyear, Los Angeles, 1979), pp. 374–383.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Fit of a Voigt function to experimental absorption coefficient. T = 373 K and p = 20 Torr.

Fig. 2
Fig. 2

Halfwidth vs pressure at T = 373 K.

Fig. 3
Fig. 3

Halfwidth vs temperature at p = 50 Torr. Slope n = −0.56 ∓0.09.

Tables (1)

Tables Icon

Table I Comparison of Room Temperature Linewidths

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ ν ~ p / T n ,
y = Δ ν Δ ν D ln 2 ,

Metrics