Abstract

The operating characteristics of a water vapor–helium laser working at 28 μm are presented. Comparison is made of power output in continuous and pulsed operation for various gas mixtures and discharge currents for the same laser cavity.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. S. Benedict, M. A. Pollack, W. J. Tomlinson, “The Water-Vapor Laser,” IEEE J. Quantum Electron. QE-5, 108 (1969).
    [Crossref]
  2. G. D. Downey, D. W. Robinson, “Chemical Pumping of the Water Vapor Laser. II,” J. Chem. Phys. 6, 2854 (1976); J. Chem. Phys. 6, 2858 (1976).
    [Crossref]
  3. A. B. Petersen, L. W. Braveman, C. Wittig, “H2O, NO and N2O Infrared Lasers Pumped Directly and Indirectly by Electronic-Vibrational Energy Transfer,” J. Appl. Phys. 48, 230 (1977).
    [Crossref]
  4. A. Crocker, H. A. Gebbie, M. F. Kimmitt, L. E. S. Mathias, “Stimulated Emission in the Far Infra-Red,” Nature London 201, 250 (1964).
    [Crossref]
  5. W. J. Sarjeant, Z. Kucerovsky, E. Brannen, “Excitation Processes and Relaxation Rates in the Pulsed Water Vapor Laser,” Appl. Opt. 11, 735 (1972).
    [Crossref] [PubMed]
  6. W. J. Sarjeant, E. Brannen, “Enhancement of Laser Action in H2O by the Addition of Helium,” IEEE J. Quantum Electron. QE-5, 620 (1969).
    [Crossref]
  7. J. P. Pichamuthu, J. C. Hassler, G. H. Sherman, P. D. Coleman, “The Role of Helium in the H2O Laser,” IEEE J. Quantum Electron. QE-9, 244 (1973).
    [Crossref]
  8. P. Woskoboinikow, W. C. Jennings, “Improved CW Laser Action on the 118.6 and 220 μm H2O Transitions Using Helium and Hydrogen,” Appl. Phys. Lett. 22, 658 (1975).
    [Crossref]
  9. Y. Yasuoka, P. Burlamacchi, S. Y. Wang, T. K. Grestafson, “Characteristics of a CW Water Vapor Laser at 118 and 28 μm,” IEEE J. Quantum Electron. QE-15, 614 (1979).
    [Crossref]
  10. A. Morinaga, K. Tanaka, “Operating Characteristics and Discharge conditions of a cw 28 μm Water Vapor Laser,” IEEE J. Quantum Electron. QE-16, 406 (1980).
    [Crossref]
  11. E. R. Mosburg, “A Study of the cw 28-μm Water-Vapor Laser,” IEEE J. Quantum Electron. QE-9, 843 (1973).
    [Crossref]
  12. W. J. Sarjeant, “Submillimeter Gas Lasers,” MSc Thesis, U. Western Ontario (1968).
  13. E. Brannen, “Reflection Gratings as Elements in Far Infrared Lasers,” Proc. IEEE 53, 2134 (1965).
    [Crossref]
  14. M. Hoeksema, W. J. Sarjeant, E. Brannen, “Far-Infrared Gas Lasers as Sources of Polarized Radiation,” IEEE J. Quantum Electron. 5, 477 (1969).
    [Crossref]
  15. E. Brannen, M. Hoeksema, W. J. Sarjeant, “Linearly Polarized Monochromatic Radiation from a Water Vapor at 118.6 μm,” Can. J. Phys. 47, 597 (1969).
    [Crossref]
  16. W. J. Sarjeant, Z. Kucerovsky, D. Rumbold, E. Brannen, “An Inexpensive Pyroelectric Detector for Pulsed and cw Infrared Detection,” Rev. Sci. Instrum. 41, 1890 (1970).
    [Crossref]
  17. E. H. Putley, “Thermal Detectors,” in Optical and Infrared Detectors, R. J. Keyes, Ed. (Springer-Verlag, Berlin, 1980).
  18. E. Brannen, D. G. Rumbold, “Reflectivity and Polarization Characteristics of Reflection Echelette Gratings,” Appl. Opt. 8, 1506 (1969).
    [Crossref]

1980 (1)

A. Morinaga, K. Tanaka, “Operating Characteristics and Discharge conditions of a cw 28 μm Water Vapor Laser,” IEEE J. Quantum Electron. QE-16, 406 (1980).
[Crossref]

1979 (1)

Y. Yasuoka, P. Burlamacchi, S. Y. Wang, T. K. Grestafson, “Characteristics of a CW Water Vapor Laser at 118 and 28 μm,” IEEE J. Quantum Electron. QE-15, 614 (1979).
[Crossref]

1977 (1)

A. B. Petersen, L. W. Braveman, C. Wittig, “H2O, NO and N2O Infrared Lasers Pumped Directly and Indirectly by Electronic-Vibrational Energy Transfer,” J. Appl. Phys. 48, 230 (1977).
[Crossref]

1976 (1)

G. D. Downey, D. W. Robinson, “Chemical Pumping of the Water Vapor Laser. II,” J. Chem. Phys. 6, 2854 (1976); J. Chem. Phys. 6, 2858 (1976).
[Crossref]

1975 (1)

P. Woskoboinikow, W. C. Jennings, “Improved CW Laser Action on the 118.6 and 220 μm H2O Transitions Using Helium and Hydrogen,” Appl. Phys. Lett. 22, 658 (1975).
[Crossref]

1973 (2)

J. P. Pichamuthu, J. C. Hassler, G. H. Sherman, P. D. Coleman, “The Role of Helium in the H2O Laser,” IEEE J. Quantum Electron. QE-9, 244 (1973).
[Crossref]

E. R. Mosburg, “A Study of the cw 28-μm Water-Vapor Laser,” IEEE J. Quantum Electron. QE-9, 843 (1973).
[Crossref]

1972 (1)

1970 (1)

W. J. Sarjeant, Z. Kucerovsky, D. Rumbold, E. Brannen, “An Inexpensive Pyroelectric Detector for Pulsed and cw Infrared Detection,” Rev. Sci. Instrum. 41, 1890 (1970).
[Crossref]

1969 (5)

E. Brannen, D. G. Rumbold, “Reflectivity and Polarization Characteristics of Reflection Echelette Gratings,” Appl. Opt. 8, 1506 (1969).
[Crossref]

M. Hoeksema, W. J. Sarjeant, E. Brannen, “Far-Infrared Gas Lasers as Sources of Polarized Radiation,” IEEE J. Quantum Electron. 5, 477 (1969).
[Crossref]

E. Brannen, M. Hoeksema, W. J. Sarjeant, “Linearly Polarized Monochromatic Radiation from a Water Vapor at 118.6 μm,” Can. J. Phys. 47, 597 (1969).
[Crossref]

W. J. Sarjeant, E. Brannen, “Enhancement of Laser Action in H2O by the Addition of Helium,” IEEE J. Quantum Electron. QE-5, 620 (1969).
[Crossref]

W. S. Benedict, M. A. Pollack, W. J. Tomlinson, “The Water-Vapor Laser,” IEEE J. Quantum Electron. QE-5, 108 (1969).
[Crossref]

1965 (1)

E. Brannen, “Reflection Gratings as Elements in Far Infrared Lasers,” Proc. IEEE 53, 2134 (1965).
[Crossref]

1964 (1)

A. Crocker, H. A. Gebbie, M. F. Kimmitt, L. E. S. Mathias, “Stimulated Emission in the Far Infra-Red,” Nature London 201, 250 (1964).
[Crossref]

Benedict, W. S.

W. S. Benedict, M. A. Pollack, W. J. Tomlinson, “The Water-Vapor Laser,” IEEE J. Quantum Electron. QE-5, 108 (1969).
[Crossref]

Brannen, E.

W. J. Sarjeant, Z. Kucerovsky, E. Brannen, “Excitation Processes and Relaxation Rates in the Pulsed Water Vapor Laser,” Appl. Opt. 11, 735 (1972).
[Crossref] [PubMed]

W. J. Sarjeant, Z. Kucerovsky, D. Rumbold, E. Brannen, “An Inexpensive Pyroelectric Detector for Pulsed and cw Infrared Detection,” Rev. Sci. Instrum. 41, 1890 (1970).
[Crossref]

M. Hoeksema, W. J. Sarjeant, E. Brannen, “Far-Infrared Gas Lasers as Sources of Polarized Radiation,” IEEE J. Quantum Electron. 5, 477 (1969).
[Crossref]

E. Brannen, M. Hoeksema, W. J. Sarjeant, “Linearly Polarized Monochromatic Radiation from a Water Vapor at 118.6 μm,” Can. J. Phys. 47, 597 (1969).
[Crossref]

W. J. Sarjeant, E. Brannen, “Enhancement of Laser Action in H2O by the Addition of Helium,” IEEE J. Quantum Electron. QE-5, 620 (1969).
[Crossref]

E. Brannen, D. G. Rumbold, “Reflectivity and Polarization Characteristics of Reflection Echelette Gratings,” Appl. Opt. 8, 1506 (1969).
[Crossref]

E. Brannen, “Reflection Gratings as Elements in Far Infrared Lasers,” Proc. IEEE 53, 2134 (1965).
[Crossref]

Braveman, L. W.

A. B. Petersen, L. W. Braveman, C. Wittig, “H2O, NO and N2O Infrared Lasers Pumped Directly and Indirectly by Electronic-Vibrational Energy Transfer,” J. Appl. Phys. 48, 230 (1977).
[Crossref]

Burlamacchi, P.

Y. Yasuoka, P. Burlamacchi, S. Y. Wang, T. K. Grestafson, “Characteristics of a CW Water Vapor Laser at 118 and 28 μm,” IEEE J. Quantum Electron. QE-15, 614 (1979).
[Crossref]

Coleman, P. D.

J. P. Pichamuthu, J. C. Hassler, G. H. Sherman, P. D. Coleman, “The Role of Helium in the H2O Laser,” IEEE J. Quantum Electron. QE-9, 244 (1973).
[Crossref]

Crocker, A.

A. Crocker, H. A. Gebbie, M. F. Kimmitt, L. E. S. Mathias, “Stimulated Emission in the Far Infra-Red,” Nature London 201, 250 (1964).
[Crossref]

Downey, G. D.

G. D. Downey, D. W. Robinson, “Chemical Pumping of the Water Vapor Laser. II,” J. Chem. Phys. 6, 2854 (1976); J. Chem. Phys. 6, 2858 (1976).
[Crossref]

Gebbie, H. A.

A. Crocker, H. A. Gebbie, M. F. Kimmitt, L. E. S. Mathias, “Stimulated Emission in the Far Infra-Red,” Nature London 201, 250 (1964).
[Crossref]

Grestafson, T. K.

Y. Yasuoka, P. Burlamacchi, S. Y. Wang, T. K. Grestafson, “Characteristics of a CW Water Vapor Laser at 118 and 28 μm,” IEEE J. Quantum Electron. QE-15, 614 (1979).
[Crossref]

Hassler, J. C.

J. P. Pichamuthu, J. C. Hassler, G. H. Sherman, P. D. Coleman, “The Role of Helium in the H2O Laser,” IEEE J. Quantum Electron. QE-9, 244 (1973).
[Crossref]

Hoeksema, M.

M. Hoeksema, W. J. Sarjeant, E. Brannen, “Far-Infrared Gas Lasers as Sources of Polarized Radiation,” IEEE J. Quantum Electron. 5, 477 (1969).
[Crossref]

E. Brannen, M. Hoeksema, W. J. Sarjeant, “Linearly Polarized Monochromatic Radiation from a Water Vapor at 118.6 μm,” Can. J. Phys. 47, 597 (1969).
[Crossref]

Jennings, W. C.

P. Woskoboinikow, W. C. Jennings, “Improved CW Laser Action on the 118.6 and 220 μm H2O Transitions Using Helium and Hydrogen,” Appl. Phys. Lett. 22, 658 (1975).
[Crossref]

Kimmitt, M. F.

A. Crocker, H. A. Gebbie, M. F. Kimmitt, L. E. S. Mathias, “Stimulated Emission in the Far Infra-Red,” Nature London 201, 250 (1964).
[Crossref]

Kucerovsky, Z.

W. J. Sarjeant, Z. Kucerovsky, E. Brannen, “Excitation Processes and Relaxation Rates in the Pulsed Water Vapor Laser,” Appl. Opt. 11, 735 (1972).
[Crossref] [PubMed]

W. J. Sarjeant, Z. Kucerovsky, D. Rumbold, E. Brannen, “An Inexpensive Pyroelectric Detector for Pulsed and cw Infrared Detection,” Rev. Sci. Instrum. 41, 1890 (1970).
[Crossref]

Mathias, L. E. S.

A. Crocker, H. A. Gebbie, M. F. Kimmitt, L. E. S. Mathias, “Stimulated Emission in the Far Infra-Red,” Nature London 201, 250 (1964).
[Crossref]

Morinaga, A.

A. Morinaga, K. Tanaka, “Operating Characteristics and Discharge conditions of a cw 28 μm Water Vapor Laser,” IEEE J. Quantum Electron. QE-16, 406 (1980).
[Crossref]

Mosburg, E. R.

E. R. Mosburg, “A Study of the cw 28-μm Water-Vapor Laser,” IEEE J. Quantum Electron. QE-9, 843 (1973).
[Crossref]

Petersen, A. B.

A. B. Petersen, L. W. Braveman, C. Wittig, “H2O, NO and N2O Infrared Lasers Pumped Directly and Indirectly by Electronic-Vibrational Energy Transfer,” J. Appl. Phys. 48, 230 (1977).
[Crossref]

Pichamuthu, J. P.

J. P. Pichamuthu, J. C. Hassler, G. H. Sherman, P. D. Coleman, “The Role of Helium in the H2O Laser,” IEEE J. Quantum Electron. QE-9, 244 (1973).
[Crossref]

Pollack, M. A.

W. S. Benedict, M. A. Pollack, W. J. Tomlinson, “The Water-Vapor Laser,” IEEE J. Quantum Electron. QE-5, 108 (1969).
[Crossref]

Putley, E. H.

E. H. Putley, “Thermal Detectors,” in Optical and Infrared Detectors, R. J. Keyes, Ed. (Springer-Verlag, Berlin, 1980).

Robinson, D. W.

G. D. Downey, D. W. Robinson, “Chemical Pumping of the Water Vapor Laser. II,” J. Chem. Phys. 6, 2854 (1976); J. Chem. Phys. 6, 2858 (1976).
[Crossref]

Rumbold, D.

W. J. Sarjeant, Z. Kucerovsky, D. Rumbold, E. Brannen, “An Inexpensive Pyroelectric Detector for Pulsed and cw Infrared Detection,” Rev. Sci. Instrum. 41, 1890 (1970).
[Crossref]

Rumbold, D. G.

Sarjeant, W. J.

W. J. Sarjeant, Z. Kucerovsky, E. Brannen, “Excitation Processes and Relaxation Rates in the Pulsed Water Vapor Laser,” Appl. Opt. 11, 735 (1972).
[Crossref] [PubMed]

W. J. Sarjeant, Z. Kucerovsky, D. Rumbold, E. Brannen, “An Inexpensive Pyroelectric Detector for Pulsed and cw Infrared Detection,” Rev. Sci. Instrum. 41, 1890 (1970).
[Crossref]

W. J. Sarjeant, E. Brannen, “Enhancement of Laser Action in H2O by the Addition of Helium,” IEEE J. Quantum Electron. QE-5, 620 (1969).
[Crossref]

E. Brannen, M. Hoeksema, W. J. Sarjeant, “Linearly Polarized Monochromatic Radiation from a Water Vapor at 118.6 μm,” Can. J. Phys. 47, 597 (1969).
[Crossref]

M. Hoeksema, W. J. Sarjeant, E. Brannen, “Far-Infrared Gas Lasers as Sources of Polarized Radiation,” IEEE J. Quantum Electron. 5, 477 (1969).
[Crossref]

W. J. Sarjeant, “Submillimeter Gas Lasers,” MSc Thesis, U. Western Ontario (1968).

Sherman, G. H.

J. P. Pichamuthu, J. C. Hassler, G. H. Sherman, P. D. Coleman, “The Role of Helium in the H2O Laser,” IEEE J. Quantum Electron. QE-9, 244 (1973).
[Crossref]

Tanaka, K.

A. Morinaga, K. Tanaka, “Operating Characteristics and Discharge conditions of a cw 28 μm Water Vapor Laser,” IEEE J. Quantum Electron. QE-16, 406 (1980).
[Crossref]

Tomlinson, W. J.

W. S. Benedict, M. A. Pollack, W. J. Tomlinson, “The Water-Vapor Laser,” IEEE J. Quantum Electron. QE-5, 108 (1969).
[Crossref]

Wang, S. Y.

Y. Yasuoka, P. Burlamacchi, S. Y. Wang, T. K. Grestafson, “Characteristics of a CW Water Vapor Laser at 118 and 28 μm,” IEEE J. Quantum Electron. QE-15, 614 (1979).
[Crossref]

Wittig, C.

A. B. Petersen, L. W. Braveman, C. Wittig, “H2O, NO and N2O Infrared Lasers Pumped Directly and Indirectly by Electronic-Vibrational Energy Transfer,” J. Appl. Phys. 48, 230 (1977).
[Crossref]

Woskoboinikow, P.

P. Woskoboinikow, W. C. Jennings, “Improved CW Laser Action on the 118.6 and 220 μm H2O Transitions Using Helium and Hydrogen,” Appl. Phys. Lett. 22, 658 (1975).
[Crossref]

Yasuoka, Y.

Y. Yasuoka, P. Burlamacchi, S. Y. Wang, T. K. Grestafson, “Characteristics of a CW Water Vapor Laser at 118 and 28 μm,” IEEE J. Quantum Electron. QE-15, 614 (1979).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

P. Woskoboinikow, W. C. Jennings, “Improved CW Laser Action on the 118.6 and 220 μm H2O Transitions Using Helium and Hydrogen,” Appl. Phys. Lett. 22, 658 (1975).
[Crossref]

Can. J. Phys. (1)

E. Brannen, M. Hoeksema, W. J. Sarjeant, “Linearly Polarized Monochromatic Radiation from a Water Vapor at 118.6 μm,” Can. J. Phys. 47, 597 (1969).
[Crossref]

IEEE J. Quantum Electron. (7)

W. S. Benedict, M. A. Pollack, W. J. Tomlinson, “The Water-Vapor Laser,” IEEE J. Quantum Electron. QE-5, 108 (1969).
[Crossref]

Y. Yasuoka, P. Burlamacchi, S. Y. Wang, T. K. Grestafson, “Characteristics of a CW Water Vapor Laser at 118 and 28 μm,” IEEE J. Quantum Electron. QE-15, 614 (1979).
[Crossref]

A. Morinaga, K. Tanaka, “Operating Characteristics and Discharge conditions of a cw 28 μm Water Vapor Laser,” IEEE J. Quantum Electron. QE-16, 406 (1980).
[Crossref]

E. R. Mosburg, “A Study of the cw 28-μm Water-Vapor Laser,” IEEE J. Quantum Electron. QE-9, 843 (1973).
[Crossref]

W. J. Sarjeant, E. Brannen, “Enhancement of Laser Action in H2O by the Addition of Helium,” IEEE J. Quantum Electron. QE-5, 620 (1969).
[Crossref]

J. P. Pichamuthu, J. C. Hassler, G. H. Sherman, P. D. Coleman, “The Role of Helium in the H2O Laser,” IEEE J. Quantum Electron. QE-9, 244 (1973).
[Crossref]

M. Hoeksema, W. J. Sarjeant, E. Brannen, “Far-Infrared Gas Lasers as Sources of Polarized Radiation,” IEEE J. Quantum Electron. 5, 477 (1969).
[Crossref]

J. Appl. Phys. (1)

A. B. Petersen, L. W. Braveman, C. Wittig, “H2O, NO and N2O Infrared Lasers Pumped Directly and Indirectly by Electronic-Vibrational Energy Transfer,” J. Appl. Phys. 48, 230 (1977).
[Crossref]

J. Chem. Phys. (1)

G. D. Downey, D. W. Robinson, “Chemical Pumping of the Water Vapor Laser. II,” J. Chem. Phys. 6, 2854 (1976); J. Chem. Phys. 6, 2858 (1976).
[Crossref]

Nature London (1)

A. Crocker, H. A. Gebbie, M. F. Kimmitt, L. E. S. Mathias, “Stimulated Emission in the Far Infra-Red,” Nature London 201, 250 (1964).
[Crossref]

Proc. IEEE (1)

E. Brannen, “Reflection Gratings as Elements in Far Infrared Lasers,” Proc. IEEE 53, 2134 (1965).
[Crossref]

Rev. Sci. Instrum. (1)

W. J. Sarjeant, Z. Kucerovsky, D. Rumbold, E. Brannen, “An Inexpensive Pyroelectric Detector for Pulsed and cw Infrared Detection,” Rev. Sci. Instrum. 41, 1890 (1970).
[Crossref]

Other (2)

E. H. Putley, “Thermal Detectors,” in Optical and Infrared Detectors, R. J. Keyes, Ed. (Springer-Verlag, Berlin, 1980).

W. J. Sarjeant, “Submillimeter Gas Lasers,” MSc Thesis, U. Western Ontario (1968).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Continuous-wave laser output power vs excitation current for a constant 1-Torr helium pressure and selected water vapor pressures.

Fig. 2
Fig. 2

Continuous-wave laser output power vs excitation current for a constant 2-Torr helium pressure and selected water vapor pressures.

Fig. 3
Fig. 3

Continuous-wave laser output power vs excitation current for a constant 3-Torr helium pressure and selected water vapor pressures.

Fig. 4
Fig. 4

Continuous-wave laser output power vs excitation current for a constant 2-Torr helium pressure and optimum water vapor pressure (0.32 Torr).

Fig. 5
Fig. 5

Continuous-wave laser output power vs water vapor pressure for constant 2- and 3-Torr helium pressures and optimum current (0.27 A).

Fig. 6
Fig. 6

Continuous-wave laser output power vs helium pressure for an optimum water vapor pressure and optimum current (0.27 A).

Fig. 7
Fig. 7

Pulsed laser output energy vs excitation current for a constant 2-Torr helium pressure and selected water vapor pressures.

Fig. 8
Fig. 8

Pulsed laser output energy vs excitation current for a constant 4-Torr helium pressure and selected water vapor pressures.

Fig. 9
Fig. 9

Pulsed laser output energy vs water vapor pressure for a constant pulsed excitation current (I = 400 A) and selected helium pressure.

Metrics