Abstract

A method for rapidly tuning lasers is presented. The system utilizes a rotating eight-sided mirror and a fixed grating. It is demonstrated that the entire CO2 lasing spectrum can be tuned at effective rates of up to 400 Hz. It is shown that, although the pulse energy is diminished as the tuning rate is increased, the loss comes from the tail of the pulse, and the peak power is almost unchanged. In addition, the tuning method preserves the spatial beam profile while contributing a minimum of beam steering.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. S. Stark, A. Crocker, G. J. Steward, “A Sealed 100-hz CO2 TEA Laser Using High CO2 Concentrations and Ambient-Temperature Catalysts,” J. Phys. E 16, 158 (1983).
    [CrossRef]
  2. N. Menyuk, P. F. Moulton, “Development of a High-Repetition-Rate Mini-TEA CO2 Laser,” Rev. Sci. Instrum. 51, 216 (1980).
    [CrossRef]
  3. K. R. Rickwood, J. McInnes, “High Repetition Rate Mini TEA CO2 Laser Using a Semiconductor Preionizer,” Rev. Sci. Instrum. 53, 1667 (1982).
    [CrossRef]
  4. S. Holly, S. Aiken, “Carbon Dioxide Probe Laser with Rapid Wavelength Switching,” Proc. Soc. Photo-Opt. Instrum. Eng. 122, 45 (1977).
  5. A. Crocker, R. M. Jenkins, M. Johnson, “A Frequency Agile, Sealed-Off CO2 TEA Laser,” J. Phys. E 18, 133 (1985).
    [CrossRef]
  6. F. R. Faxvog, H. W. Mocker, “Rapidly Tunable CO2 TEA Laser,” Appl. Opt. 21, 3986 (1982).
    [CrossRef] [PubMed]
  7. General Scanning Inc., 500 Arsenal St., Watertown, MA 02172.
  8. D. K. Killinger, N. Menyuk, “Remote Probing of the Atmosphere Using a CO2 DIAL System,” J. Quantum Electron. QE-17, 1917 (1981).
    [CrossRef]

1985

A. Crocker, R. M. Jenkins, M. Johnson, “A Frequency Agile, Sealed-Off CO2 TEA Laser,” J. Phys. E 18, 133 (1985).
[CrossRef]

1983

D. S. Stark, A. Crocker, G. J. Steward, “A Sealed 100-hz CO2 TEA Laser Using High CO2 Concentrations and Ambient-Temperature Catalysts,” J. Phys. E 16, 158 (1983).
[CrossRef]

1982

K. R. Rickwood, J. McInnes, “High Repetition Rate Mini TEA CO2 Laser Using a Semiconductor Preionizer,” Rev. Sci. Instrum. 53, 1667 (1982).
[CrossRef]

F. R. Faxvog, H. W. Mocker, “Rapidly Tunable CO2 TEA Laser,” Appl. Opt. 21, 3986 (1982).
[CrossRef] [PubMed]

1981

D. K. Killinger, N. Menyuk, “Remote Probing of the Atmosphere Using a CO2 DIAL System,” J. Quantum Electron. QE-17, 1917 (1981).
[CrossRef]

1980

N. Menyuk, P. F. Moulton, “Development of a High-Repetition-Rate Mini-TEA CO2 Laser,” Rev. Sci. Instrum. 51, 216 (1980).
[CrossRef]

1977

S. Holly, S. Aiken, “Carbon Dioxide Probe Laser with Rapid Wavelength Switching,” Proc. Soc. Photo-Opt. Instrum. Eng. 122, 45 (1977).

Aiken, S.

S. Holly, S. Aiken, “Carbon Dioxide Probe Laser with Rapid Wavelength Switching,” Proc. Soc. Photo-Opt. Instrum. Eng. 122, 45 (1977).

Crocker, A.

A. Crocker, R. M. Jenkins, M. Johnson, “A Frequency Agile, Sealed-Off CO2 TEA Laser,” J. Phys. E 18, 133 (1985).
[CrossRef]

D. S. Stark, A. Crocker, G. J. Steward, “A Sealed 100-hz CO2 TEA Laser Using High CO2 Concentrations and Ambient-Temperature Catalysts,” J. Phys. E 16, 158 (1983).
[CrossRef]

Faxvog, F. R.

Holly, S.

S. Holly, S. Aiken, “Carbon Dioxide Probe Laser with Rapid Wavelength Switching,” Proc. Soc. Photo-Opt. Instrum. Eng. 122, 45 (1977).

Jenkins, R. M.

A. Crocker, R. M. Jenkins, M. Johnson, “A Frequency Agile, Sealed-Off CO2 TEA Laser,” J. Phys. E 18, 133 (1985).
[CrossRef]

Johnson, M.

A. Crocker, R. M. Jenkins, M. Johnson, “A Frequency Agile, Sealed-Off CO2 TEA Laser,” J. Phys. E 18, 133 (1985).
[CrossRef]

Killinger, D. K.

D. K. Killinger, N. Menyuk, “Remote Probing of the Atmosphere Using a CO2 DIAL System,” J. Quantum Electron. QE-17, 1917 (1981).
[CrossRef]

McInnes, J.

K. R. Rickwood, J. McInnes, “High Repetition Rate Mini TEA CO2 Laser Using a Semiconductor Preionizer,” Rev. Sci. Instrum. 53, 1667 (1982).
[CrossRef]

Menyuk, N.

D. K. Killinger, N. Menyuk, “Remote Probing of the Atmosphere Using a CO2 DIAL System,” J. Quantum Electron. QE-17, 1917 (1981).
[CrossRef]

N. Menyuk, P. F. Moulton, “Development of a High-Repetition-Rate Mini-TEA CO2 Laser,” Rev. Sci. Instrum. 51, 216 (1980).
[CrossRef]

Mocker, H. W.

Moulton, P. F.

N. Menyuk, P. F. Moulton, “Development of a High-Repetition-Rate Mini-TEA CO2 Laser,” Rev. Sci. Instrum. 51, 216 (1980).
[CrossRef]

Rickwood, K. R.

K. R. Rickwood, J. McInnes, “High Repetition Rate Mini TEA CO2 Laser Using a Semiconductor Preionizer,” Rev. Sci. Instrum. 53, 1667 (1982).
[CrossRef]

Stark, D. S.

D. S. Stark, A. Crocker, G. J. Steward, “A Sealed 100-hz CO2 TEA Laser Using High CO2 Concentrations and Ambient-Temperature Catalysts,” J. Phys. E 16, 158 (1983).
[CrossRef]

Steward, G. J.

D. S. Stark, A. Crocker, G. J. Steward, “A Sealed 100-hz CO2 TEA Laser Using High CO2 Concentrations and Ambient-Temperature Catalysts,” J. Phys. E 16, 158 (1983).
[CrossRef]

Appl. Opt.

J. Phys. E

D. S. Stark, A. Crocker, G. J. Steward, “A Sealed 100-hz CO2 TEA Laser Using High CO2 Concentrations and Ambient-Temperature Catalysts,” J. Phys. E 16, 158 (1983).
[CrossRef]

A. Crocker, R. M. Jenkins, M. Johnson, “A Frequency Agile, Sealed-Off CO2 TEA Laser,” J. Phys. E 18, 133 (1985).
[CrossRef]

J. Quantum Electron.

D. K. Killinger, N. Menyuk, “Remote Probing of the Atmosphere Using a CO2 DIAL System,” J. Quantum Electron. QE-17, 1917 (1981).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng.

S. Holly, S. Aiken, “Carbon Dioxide Probe Laser with Rapid Wavelength Switching,” Proc. Soc. Photo-Opt. Instrum. Eng. 122, 45 (1977).

Rev. Sci. Instrum.

N. Menyuk, P. F. Moulton, “Development of a High-Repetition-Rate Mini-TEA CO2 Laser,” Rev. Sci. Instrum. 51, 216 (1980).
[CrossRef]

K. R. Rickwood, J. McInnes, “High Repetition Rate Mini TEA CO2 Laser Using a Semiconductor Preionizer,” Rev. Sci. Instrum. 53, 1667 (1982).
[CrossRef]

Other

General Scanning Inc., 500 Arsenal St., Watertown, MA 02172.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup of the rapid tuning system.

Fig. 2
Fig. 2

Output energy spectrum obtained by delaying the laser firing relative to the grating position at a mirror rotational speed of 1200 rpm.

Fig. 3
Fig. 3

Typical separation between lines located at extremes of the spectrum for a mirror rotational speed of 1200 rpm.

Fig. 4
Fig. 4

Output energy dependence on rotational rate of the mirror.

Fig. 5
Fig. 5

Oscillograms showing the change in pulse shape as a function of mirror rotation rate for the 10P20 line. The time scale for all pictures is 500 ns/div.

Fig. 6
Fig. 6

Full duration of strong and weak laser lines as a function of mirror rotation rate.

Tables (1)

Tables Icon

Table I Far field divergence of the 10P20 line. Divergence was Calculated from the Full Width of the Energy Distribution Measured at the 1/e2 Points

Metrics