Abstract

The design, construction, and operational characteristics of an optical resonator for an annular gain media are described. The system, developed for laser power extraction investigations in a new type of coaxial discharge geometry, features a folded multipass unstable resonator concept, fabricated from lightweight uncoated diamond-turned aluminum substrates. The resulting cw CO2 device incorporates excitation aspects of the nonself-sustained PIE excitation process in addition to a new magnetic discharge stabilization technique. Laser performance and output beam characteristics are presented.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. K. Garnsworthy, L. E. Mathias, C. H. Carmicheal, “Atmospheric Pressure Pulsed CO2 Laser Utilizing Preionization by High Energy Electrons,” Appl. Phys. Lett. 19, 506 (1971).
    [CrossRef]
  2. G. R. Osche, H. E. Sonntag, “A Compact Cylindrical CO2 TEA Laser,” IEEE J. Qauntum Electron. QE-12, 752 (1976).
    [CrossRef]
  3. K. T. K. Cheng, L. W. Casperson, “Properties of a Coaxial cw CO2 Laser,” Appl. Opt. 18, 2130 (1979).
    [CrossRef] [PubMed]
  4. A. Crocker, M. S. Wills, “Carbon Dioxide Laser with High Power per Unit Length,” Electron. Lett. 5, 63 (1981).
    [CrossRef]
  5. L. W. Casperson, P. M. Scheinert, “Multipass Resonators for Annular Gain Lasers,” Opt. Qauntum Electron. 13, 193 (1981).
    [CrossRef]
  6. V. A. Seguin, H. J. J. Seguin, C. E. Capjack, “Electrical Characteristics of a MAGPIE Coaxial Laser Discharge System,” Appl. Opt. 24, 1265 (1985).
    [CrossRef] [PubMed]
  7. D. P. Chernin, “Optical Extraction Efficiency in Lasers with High Fresnel Number Confocal Unstable Resonators,” Appl. Opt. 18, 3562 (1979).
    [CrossRef] [PubMed]
  8. V. A. Seguin, H. J. J. Seguin, C. E. Capjack, S. K. Nikumb, to be published in IEEE. J. Quantum Electron.
  9. M. Hishii, N. Nagai, A. Nagai, T. Akiba, “Influence of Self-Absorption on Output Power Characteristics of a High Pressure CW CO2 Laser,” Appl. Phys. 52, 4953 (1981).
  10. T. J. Lowke, A. V. Phelps, B. W. Irwin, “Predicted Electron Transport Coefficients and Operating Characteristics of CO2–N2–He Laser Mixtures,” J. Appl. Phys. 44, 4664 (1973).
    [CrossRef]
  11. C. K. N. Patel, “Continuous-wave Laser Action On Vibrational-Rotational Transition of CO2,” Phys. Rev. Lett. 336, 1187 (1964).
  12. V. A. Seguin, H. J. J. Seguin, C. E. Capjack, S. K. Nikumb, to be published.
  13. C. E. Capjack, H. J. J. Seguin, D. M. Antoniuk, V. A. Seguin, “A Magnetically Stabilized Coaxial Laser Discharge,” Appl. Phys. B 26, 161 (1981).
    [CrossRef]
  14. T. Ferguson, M. E. Smithers, “Toric Unstable Resonators,” Appl. Opt. 23, 2122 (1984).
    [CrossRef] [PubMed]

1985 (1)

1984 (1)

1981 (4)

C. E. Capjack, H. J. J. Seguin, D. M. Antoniuk, V. A. Seguin, “A Magnetically Stabilized Coaxial Laser Discharge,” Appl. Phys. B 26, 161 (1981).
[CrossRef]

M. Hishii, N. Nagai, A. Nagai, T. Akiba, “Influence of Self-Absorption on Output Power Characteristics of a High Pressure CW CO2 Laser,” Appl. Phys. 52, 4953 (1981).

A. Crocker, M. S. Wills, “Carbon Dioxide Laser with High Power per Unit Length,” Electron. Lett. 5, 63 (1981).
[CrossRef]

L. W. Casperson, P. M. Scheinert, “Multipass Resonators for Annular Gain Lasers,” Opt. Qauntum Electron. 13, 193 (1981).
[CrossRef]

1979 (2)

1976 (1)

G. R. Osche, H. E. Sonntag, “A Compact Cylindrical CO2 TEA Laser,” IEEE J. Qauntum Electron. QE-12, 752 (1976).
[CrossRef]

1973 (1)

T. J. Lowke, A. V. Phelps, B. W. Irwin, “Predicted Electron Transport Coefficients and Operating Characteristics of CO2–N2–He Laser Mixtures,” J. Appl. Phys. 44, 4664 (1973).
[CrossRef]

1971 (1)

R. K. Garnsworthy, L. E. Mathias, C. H. Carmicheal, “Atmospheric Pressure Pulsed CO2 Laser Utilizing Preionization by High Energy Electrons,” Appl. Phys. Lett. 19, 506 (1971).
[CrossRef]

1964 (1)

C. K. N. Patel, “Continuous-wave Laser Action On Vibrational-Rotational Transition of CO2,” Phys. Rev. Lett. 336, 1187 (1964).

Akiba, T.

M. Hishii, N. Nagai, A. Nagai, T. Akiba, “Influence of Self-Absorption on Output Power Characteristics of a High Pressure CW CO2 Laser,” Appl. Phys. 52, 4953 (1981).

Antoniuk, D. M.

C. E. Capjack, H. J. J. Seguin, D. M. Antoniuk, V. A. Seguin, “A Magnetically Stabilized Coaxial Laser Discharge,” Appl. Phys. B 26, 161 (1981).
[CrossRef]

Capjack, C. E.

V. A. Seguin, H. J. J. Seguin, C. E. Capjack, “Electrical Characteristics of a MAGPIE Coaxial Laser Discharge System,” Appl. Opt. 24, 1265 (1985).
[CrossRef] [PubMed]

C. E. Capjack, H. J. J. Seguin, D. M. Antoniuk, V. A. Seguin, “A Magnetically Stabilized Coaxial Laser Discharge,” Appl. Phys. B 26, 161 (1981).
[CrossRef]

V. A. Seguin, H. J. J. Seguin, C. E. Capjack, S. K. Nikumb, to be published in IEEE. J. Quantum Electron.

V. A. Seguin, H. J. J. Seguin, C. E. Capjack, S. K. Nikumb, to be published.

Carmicheal, C. H.

R. K. Garnsworthy, L. E. Mathias, C. H. Carmicheal, “Atmospheric Pressure Pulsed CO2 Laser Utilizing Preionization by High Energy Electrons,” Appl. Phys. Lett. 19, 506 (1971).
[CrossRef]

Casperson, L. W.

L. W. Casperson, P. M. Scheinert, “Multipass Resonators for Annular Gain Lasers,” Opt. Qauntum Electron. 13, 193 (1981).
[CrossRef]

K. T. K. Cheng, L. W. Casperson, “Properties of a Coaxial cw CO2 Laser,” Appl. Opt. 18, 2130 (1979).
[CrossRef] [PubMed]

Cheng, K. T. K.

Chernin, D. P.

Crocker, A.

A. Crocker, M. S. Wills, “Carbon Dioxide Laser with High Power per Unit Length,” Electron. Lett. 5, 63 (1981).
[CrossRef]

Ferguson, T.

Garnsworthy, R. K.

R. K. Garnsworthy, L. E. Mathias, C. H. Carmicheal, “Atmospheric Pressure Pulsed CO2 Laser Utilizing Preionization by High Energy Electrons,” Appl. Phys. Lett. 19, 506 (1971).
[CrossRef]

Hishii, M.

M. Hishii, N. Nagai, A. Nagai, T. Akiba, “Influence of Self-Absorption on Output Power Characteristics of a High Pressure CW CO2 Laser,” Appl. Phys. 52, 4953 (1981).

Irwin, B. W.

T. J. Lowke, A. V. Phelps, B. W. Irwin, “Predicted Electron Transport Coefficients and Operating Characteristics of CO2–N2–He Laser Mixtures,” J. Appl. Phys. 44, 4664 (1973).
[CrossRef]

Lowke, T. J.

T. J. Lowke, A. V. Phelps, B. W. Irwin, “Predicted Electron Transport Coefficients and Operating Characteristics of CO2–N2–He Laser Mixtures,” J. Appl. Phys. 44, 4664 (1973).
[CrossRef]

Mathias, L. E.

R. K. Garnsworthy, L. E. Mathias, C. H. Carmicheal, “Atmospheric Pressure Pulsed CO2 Laser Utilizing Preionization by High Energy Electrons,” Appl. Phys. Lett. 19, 506 (1971).
[CrossRef]

Nagai, A.

M. Hishii, N. Nagai, A. Nagai, T. Akiba, “Influence of Self-Absorption on Output Power Characteristics of a High Pressure CW CO2 Laser,” Appl. Phys. 52, 4953 (1981).

Nagai, N.

M. Hishii, N. Nagai, A. Nagai, T. Akiba, “Influence of Self-Absorption on Output Power Characteristics of a High Pressure CW CO2 Laser,” Appl. Phys. 52, 4953 (1981).

Nikumb, S. K.

V. A. Seguin, H. J. J. Seguin, C. E. Capjack, S. K. Nikumb, to be published.

V. A. Seguin, H. J. J. Seguin, C. E. Capjack, S. K. Nikumb, to be published in IEEE. J. Quantum Electron.

Osche, G. R.

G. R. Osche, H. E. Sonntag, “A Compact Cylindrical CO2 TEA Laser,” IEEE J. Qauntum Electron. QE-12, 752 (1976).
[CrossRef]

Patel, C. K. N.

C. K. N. Patel, “Continuous-wave Laser Action On Vibrational-Rotational Transition of CO2,” Phys. Rev. Lett. 336, 1187 (1964).

Phelps, A. V.

T. J. Lowke, A. V. Phelps, B. W. Irwin, “Predicted Electron Transport Coefficients and Operating Characteristics of CO2–N2–He Laser Mixtures,” J. Appl. Phys. 44, 4664 (1973).
[CrossRef]

Scheinert, P. M.

L. W. Casperson, P. M. Scheinert, “Multipass Resonators for Annular Gain Lasers,” Opt. Qauntum Electron. 13, 193 (1981).
[CrossRef]

Seguin, H. J. J.

V. A. Seguin, H. J. J. Seguin, C. E. Capjack, “Electrical Characteristics of a MAGPIE Coaxial Laser Discharge System,” Appl. Opt. 24, 1265 (1985).
[CrossRef] [PubMed]

C. E. Capjack, H. J. J. Seguin, D. M. Antoniuk, V. A. Seguin, “A Magnetically Stabilized Coaxial Laser Discharge,” Appl. Phys. B 26, 161 (1981).
[CrossRef]

V. A. Seguin, H. J. J. Seguin, C. E. Capjack, S. K. Nikumb, to be published in IEEE. J. Quantum Electron.

V. A. Seguin, H. J. J. Seguin, C. E. Capjack, S. K. Nikumb, to be published.

Seguin, V. A.

V. A. Seguin, H. J. J. Seguin, C. E. Capjack, “Electrical Characteristics of a MAGPIE Coaxial Laser Discharge System,” Appl. Opt. 24, 1265 (1985).
[CrossRef] [PubMed]

C. E. Capjack, H. J. J. Seguin, D. M. Antoniuk, V. A. Seguin, “A Magnetically Stabilized Coaxial Laser Discharge,” Appl. Phys. B 26, 161 (1981).
[CrossRef]

V. A. Seguin, H. J. J. Seguin, C. E. Capjack, S. K. Nikumb, to be published in IEEE. J. Quantum Electron.

V. A. Seguin, H. J. J. Seguin, C. E. Capjack, S. K. Nikumb, to be published.

Smithers, M. E.

Sonntag, H. E.

G. R. Osche, H. E. Sonntag, “A Compact Cylindrical CO2 TEA Laser,” IEEE J. Qauntum Electron. QE-12, 752 (1976).
[CrossRef]

Wills, M. S.

A. Crocker, M. S. Wills, “Carbon Dioxide Laser with High Power per Unit Length,” Electron. Lett. 5, 63 (1981).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. (1)

M. Hishii, N. Nagai, A. Nagai, T. Akiba, “Influence of Self-Absorption on Output Power Characteristics of a High Pressure CW CO2 Laser,” Appl. Phys. 52, 4953 (1981).

Appl. Phys. B (1)

C. E. Capjack, H. J. J. Seguin, D. M. Antoniuk, V. A. Seguin, “A Magnetically Stabilized Coaxial Laser Discharge,” Appl. Phys. B 26, 161 (1981).
[CrossRef]

Appl. Phys. Lett. (1)

R. K. Garnsworthy, L. E. Mathias, C. H. Carmicheal, “Atmospheric Pressure Pulsed CO2 Laser Utilizing Preionization by High Energy Electrons,” Appl. Phys. Lett. 19, 506 (1971).
[CrossRef]

Electron. Lett. (1)

A. Crocker, M. S. Wills, “Carbon Dioxide Laser with High Power per Unit Length,” Electron. Lett. 5, 63 (1981).
[CrossRef]

IEEE J. Qauntum Electron. (1)

G. R. Osche, H. E. Sonntag, “A Compact Cylindrical CO2 TEA Laser,” IEEE J. Qauntum Electron. QE-12, 752 (1976).
[CrossRef]

J. Appl. Phys. (1)

T. J. Lowke, A. V. Phelps, B. W. Irwin, “Predicted Electron Transport Coefficients and Operating Characteristics of CO2–N2–He Laser Mixtures,” J. Appl. Phys. 44, 4664 (1973).
[CrossRef]

Opt. Qauntum Electron. (1)

L. W. Casperson, P. M. Scheinert, “Multipass Resonators for Annular Gain Lasers,” Opt. Qauntum Electron. 13, 193 (1981).
[CrossRef]

Phys. Rev. Lett. (1)

C. K. N. Patel, “Continuous-wave Laser Action On Vibrational-Rotational Transition of CO2,” Phys. Rev. Lett. 336, 1187 (1964).

Other (2)

V. A. Seguin, H. J. J. Seguin, C. E. Capjack, S. K. Nikumb, to be published.

V. A. Seguin, H. J. J. Seguin, C. E. Capjack, S. K. Nikumb, to be published in IEEE. J. Quantum Electron.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Multipass annular resonator concept.

Figure 2
Figure 2

MAGPIE coaxial laser discharge system.

Fig. 3
Fig. 3

Seven-pass unstable resonator configuration.

Fig. 4
Fig. 4

Laser output power vs discharge input power.

Fig. 5
Fig. 5

Laser output power vs external pulser-generated ionization power.

Fig. 6
Fig. 6

Laser output power vs gas flow velocity.

Fig. 7
Fig. 7

Laser burn pattern.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

G = exp ( 2 N α 0 l ) = 1.68 ,
L = 2 N ( α 1 + α 2 ) l + ln ( R - 2 N ) = 0.336.
η max = ( 1 - Y - 1 / 2 ) 2 = 0.306.
η total = ( 0.42 ) ( 0.55 ) ( 0.85 ) ( 0.41 ) ( 0.31 ) = 0.025.
P out = ( 17 , 000 ) ( 0.025 ) = 425 W .

Metrics