Abstract

The line narrowing of excimer lasers is discussed. The theory for an optical two-effect intracavity line narrowing device, the multipass grating interferometer (MGI), is presented. An MGI contains a grating aligned in its second-order Littrow configuration and a mirror aligned parallel to the grating surface reflecting back the beam normal to the grating corresponding to the first-order diffraction. The Littrow grating is doing the coarse line narrowing, and the mirror aligned parallel to the grating has similar line narrowing properties as tilted intracavity Fabry-Perot etalons. An MGI is applied to a KrF laser cavity to achieve a linewidth of 0.03 cm−1.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman Pulse Compression of Excimer Lasers for Application to Laser Fusion,” IEEE J. Quantum Electron. QE-15, 342 (1979).
    [CrossRef]
  2. J. P. Partanen, M. J. Shaw, “High Power Forward Raman Amplifiers Employing Low Pressure Gases in Light Guides: I Theory and Applications,” submitted to J. Opt. Soc. Am. B (1986).
    [CrossRef]
  3. R. Fedosejevs, A. A. Offenberger, “Subnanosecond Pulses from a KrF Laser Pumped SF6 Brillouin Amplifier,” IEEE J. Quantum Electron. QE-21, 1558 (1985).
    [CrossRef]
  4. P. W. Smith, “Mode Selection in Lasers,” Proc. IEEE 60, 422 (1972).
    [CrossRef]
  5. T. J. Pacala, I. S. McDermid, J. B. Laudenslager, “Single Longitudinal Mode Operation of XeCl Laser,” Appl. Phys. Lett. 45, 507 (1984).
    [CrossRef]
  6. W. R. Leeb, “Losses Introduced by Tilting Intracavity Etalons,” Appl. Phys. 6, 267 (1975).
    [CrossRef]
  7. E. Armandillo, G. Giuliani, “Estimation of the Minimum Laser Linewidth Achievable with Grazing-Grating Configuration,” Opt. Lett. 8, 274 (1983).
    [CrossRef] [PubMed]
  8. M. G. Littman, “Single-Mode Operation of Grazing-Incidence Pulsed Dye Laser,” Opt. Lett. 3, 138 (1978).
    [CrossRef] [PubMed]
  9. M. G. Littman, “Single-Mode Pulsed Tunable Dye Laser,” Appl. Opt. 23, 4465 (1984).
    [CrossRef] [PubMed]
  10. T. W. Hänsch, “Repetitively Pulsed Tunable Dye Laser for High Resolution Spectroscopy,” Appl. Opt. 11, 895 (1972).
    [CrossRef] [PubMed]
  11. E. Armandillo, P. V. M. Lopatriello, G. Giuliani, “Single-Mode, Tunable Operation of a XeF Excimer Laser Employing an Original Interferometer,” Opt. Lett. 9, 327 (1984).
    [CrossRef] [PubMed]
  12. G. Giuliani, E. Palange, S. Loreti, G. Salvetti, “Multipass Grating Interferometer as Output Coupler for Tunable, Single-Mode Operation of Large-Bandwidth Lasers,” Opt. Lett. 10, 600 (1985).
    [CrossRef] [PubMed]
  13. I. Shosnan, N. N. Danon, U. P. Oppenheim, “Narrowband Operation of a Pulsed Dye Laser Without Intracavity Beam Expansion,” J. Appl. Phys. 48, 4495 (1977).
    [CrossRef]
  14. F. J. Duarte, “Multiple-Prism Littrow and Grazing-Incidence Pulsed CO2 Lasers,” Appl. Opt. 24, 1244 (1985).
    [CrossRef] [PubMed]
  15. R. S. Longhurst, Geometrical and Physical Optics (Longman Group, London, 1973).
  16. R. Petit, The Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, 1980).
    [CrossRef]
  17. J. Goldhar, M. W. Taylor, J. R. Murray, “An Efficient Douple-Pass Raman Amplifier with Pump Intensity Averaging in a Light Guide,” IEEE J. Quantum Electron. QE-20, 772 (1984).
    [CrossRef]
  18. R. S. F. Chang, R. H. Lemberg, M. T. Duignan, N. Djeu, “Raman Beam Cleanup of Severely Aberrated Pump Laser,” IEEE J. Quantum Electron. QE-21, 477 (1985).
    [CrossRef]

1985 (4)

R. Fedosejevs, A. A. Offenberger, “Subnanosecond Pulses from a KrF Laser Pumped SF6 Brillouin Amplifier,” IEEE J. Quantum Electron. QE-21, 1558 (1985).
[CrossRef]

G. Giuliani, E. Palange, S. Loreti, G. Salvetti, “Multipass Grating Interferometer as Output Coupler for Tunable, Single-Mode Operation of Large-Bandwidth Lasers,” Opt. Lett. 10, 600 (1985).
[CrossRef] [PubMed]

F. J. Duarte, “Multiple-Prism Littrow and Grazing-Incidence Pulsed CO2 Lasers,” Appl. Opt. 24, 1244 (1985).
[CrossRef] [PubMed]

R. S. F. Chang, R. H. Lemberg, M. T. Duignan, N. Djeu, “Raman Beam Cleanup of Severely Aberrated Pump Laser,” IEEE J. Quantum Electron. QE-21, 477 (1985).
[CrossRef]

1984 (4)

J. Goldhar, M. W. Taylor, J. R. Murray, “An Efficient Douple-Pass Raman Amplifier with Pump Intensity Averaging in a Light Guide,” IEEE J. Quantum Electron. QE-20, 772 (1984).
[CrossRef]

E. Armandillo, P. V. M. Lopatriello, G. Giuliani, “Single-Mode, Tunable Operation of a XeF Excimer Laser Employing an Original Interferometer,” Opt. Lett. 9, 327 (1984).
[CrossRef] [PubMed]

T. J. Pacala, I. S. McDermid, J. B. Laudenslager, “Single Longitudinal Mode Operation of XeCl Laser,” Appl. Phys. Lett. 45, 507 (1984).
[CrossRef]

M. G. Littman, “Single-Mode Pulsed Tunable Dye Laser,” Appl. Opt. 23, 4465 (1984).
[CrossRef] [PubMed]

1983 (1)

1979 (1)

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman Pulse Compression of Excimer Lasers for Application to Laser Fusion,” IEEE J. Quantum Electron. QE-15, 342 (1979).
[CrossRef]

1978 (1)

1977 (1)

I. Shosnan, N. N. Danon, U. P. Oppenheim, “Narrowband Operation of a Pulsed Dye Laser Without Intracavity Beam Expansion,” J. Appl. Phys. 48, 4495 (1977).
[CrossRef]

1975 (1)

W. R. Leeb, “Losses Introduced by Tilting Intracavity Etalons,” Appl. Phys. 6, 267 (1975).
[CrossRef]

1972 (2)

Armandillo, E.

Chang, R. S. F.

R. S. F. Chang, R. H. Lemberg, M. T. Duignan, N. Djeu, “Raman Beam Cleanup of Severely Aberrated Pump Laser,” IEEE J. Quantum Electron. QE-21, 477 (1985).
[CrossRef]

Danon, N. N.

I. Shosnan, N. N. Danon, U. P. Oppenheim, “Narrowband Operation of a Pulsed Dye Laser Without Intracavity Beam Expansion,” J. Appl. Phys. 48, 4495 (1977).
[CrossRef]

Djeu, N.

R. S. F. Chang, R. H. Lemberg, M. T. Duignan, N. Djeu, “Raman Beam Cleanup of Severely Aberrated Pump Laser,” IEEE J. Quantum Electron. QE-21, 477 (1985).
[CrossRef]

Duarte, F. J.

Duignan, M. T.

R. S. F. Chang, R. H. Lemberg, M. T. Duignan, N. Djeu, “Raman Beam Cleanup of Severely Aberrated Pump Laser,” IEEE J. Quantum Electron. QE-21, 477 (1985).
[CrossRef]

Eimerl, D.

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman Pulse Compression of Excimer Lasers for Application to Laser Fusion,” IEEE J. Quantum Electron. QE-15, 342 (1979).
[CrossRef]

Fedosejevs, R.

R. Fedosejevs, A. A. Offenberger, “Subnanosecond Pulses from a KrF Laser Pumped SF6 Brillouin Amplifier,” IEEE J. Quantum Electron. QE-21, 1558 (1985).
[CrossRef]

Giuliani, G.

Goldhar, J.

J. Goldhar, M. W. Taylor, J. R. Murray, “An Efficient Douple-Pass Raman Amplifier with Pump Intensity Averaging in a Light Guide,” IEEE J. Quantum Electron. QE-20, 772 (1984).
[CrossRef]

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman Pulse Compression of Excimer Lasers for Application to Laser Fusion,” IEEE J. Quantum Electron. QE-15, 342 (1979).
[CrossRef]

Hänsch, T. W.

Laudenslager, J. B.

T. J. Pacala, I. S. McDermid, J. B. Laudenslager, “Single Longitudinal Mode Operation of XeCl Laser,” Appl. Phys. Lett. 45, 507 (1984).
[CrossRef]

Leeb, W. R.

W. R. Leeb, “Losses Introduced by Tilting Intracavity Etalons,” Appl. Phys. 6, 267 (1975).
[CrossRef]

Lemberg, R. H.

R. S. F. Chang, R. H. Lemberg, M. T. Duignan, N. Djeu, “Raman Beam Cleanup of Severely Aberrated Pump Laser,” IEEE J. Quantum Electron. QE-21, 477 (1985).
[CrossRef]

Littman, M. G.

Longhurst, R. S.

R. S. Longhurst, Geometrical and Physical Optics (Longman Group, London, 1973).

Lopatriello, P. V. M.

Loreti, S.

McDermid, I. S.

T. J. Pacala, I. S. McDermid, J. B. Laudenslager, “Single Longitudinal Mode Operation of XeCl Laser,” Appl. Phys. Lett. 45, 507 (1984).
[CrossRef]

Murray, J. R.

J. Goldhar, M. W. Taylor, J. R. Murray, “An Efficient Douple-Pass Raman Amplifier with Pump Intensity Averaging in a Light Guide,” IEEE J. Quantum Electron. QE-20, 772 (1984).
[CrossRef]

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman Pulse Compression of Excimer Lasers for Application to Laser Fusion,” IEEE J. Quantum Electron. QE-15, 342 (1979).
[CrossRef]

Offenberger, A. A.

R. Fedosejevs, A. A. Offenberger, “Subnanosecond Pulses from a KrF Laser Pumped SF6 Brillouin Amplifier,” IEEE J. Quantum Electron. QE-21, 1558 (1985).
[CrossRef]

Oppenheim, U. P.

I. Shosnan, N. N. Danon, U. P. Oppenheim, “Narrowband Operation of a Pulsed Dye Laser Without Intracavity Beam Expansion,” J. Appl. Phys. 48, 4495 (1977).
[CrossRef]

Pacala, T. J.

T. J. Pacala, I. S. McDermid, J. B. Laudenslager, “Single Longitudinal Mode Operation of XeCl Laser,” Appl. Phys. Lett. 45, 507 (1984).
[CrossRef]

Palange, E.

Partanen, J. P.

J. P. Partanen, M. J. Shaw, “High Power Forward Raman Amplifiers Employing Low Pressure Gases in Light Guides: I Theory and Applications,” submitted to J. Opt. Soc. Am. B (1986).
[CrossRef]

Petit, R.

R. Petit, The Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, 1980).
[CrossRef]

Salvetti, G.

Shaw, M. J.

J. P. Partanen, M. J. Shaw, “High Power Forward Raman Amplifiers Employing Low Pressure Gases in Light Guides: I Theory and Applications,” submitted to J. Opt. Soc. Am. B (1986).
[CrossRef]

Shosnan, I.

I. Shosnan, N. N. Danon, U. P. Oppenheim, “Narrowband Operation of a Pulsed Dye Laser Without Intracavity Beam Expansion,” J. Appl. Phys. 48, 4495 (1977).
[CrossRef]

Smith, P. W.

P. W. Smith, “Mode Selection in Lasers,” Proc. IEEE 60, 422 (1972).
[CrossRef]

Szoke, A.

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman Pulse Compression of Excimer Lasers for Application to Laser Fusion,” IEEE J. Quantum Electron. QE-15, 342 (1979).
[CrossRef]

Taylor, M. W.

J. Goldhar, M. W. Taylor, J. R. Murray, “An Efficient Douple-Pass Raman Amplifier with Pump Intensity Averaging in a Light Guide,” IEEE J. Quantum Electron. QE-20, 772 (1984).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. (1)

W. R. Leeb, “Losses Introduced by Tilting Intracavity Etalons,” Appl. Phys. 6, 267 (1975).
[CrossRef]

Appl. Phys. Lett. (1)

T. J. Pacala, I. S. McDermid, J. B. Laudenslager, “Single Longitudinal Mode Operation of XeCl Laser,” Appl. Phys. Lett. 45, 507 (1984).
[CrossRef]

IEEE J. Quantum Electron. (4)

J. Goldhar, M. W. Taylor, J. R. Murray, “An Efficient Douple-Pass Raman Amplifier with Pump Intensity Averaging in a Light Guide,” IEEE J. Quantum Electron. QE-20, 772 (1984).
[CrossRef]

R. S. F. Chang, R. H. Lemberg, M. T. Duignan, N. Djeu, “Raman Beam Cleanup of Severely Aberrated Pump Laser,” IEEE J. Quantum Electron. QE-21, 477 (1985).
[CrossRef]

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman Pulse Compression of Excimer Lasers for Application to Laser Fusion,” IEEE J. Quantum Electron. QE-15, 342 (1979).
[CrossRef]

R. Fedosejevs, A. A. Offenberger, “Subnanosecond Pulses from a KrF Laser Pumped SF6 Brillouin Amplifier,” IEEE J. Quantum Electron. QE-21, 1558 (1985).
[CrossRef]

J. Appl. Phys. (1)

I. Shosnan, N. N. Danon, U. P. Oppenheim, “Narrowband Operation of a Pulsed Dye Laser Without Intracavity Beam Expansion,” J. Appl. Phys. 48, 4495 (1977).
[CrossRef]

Opt. Lett. (4)

Proc. IEEE (1)

P. W. Smith, “Mode Selection in Lasers,” Proc. IEEE 60, 422 (1972).
[CrossRef]

Other (3)

J. P. Partanen, M. J. Shaw, “High Power Forward Raman Amplifiers Employing Low Pressure Gases in Light Guides: I Theory and Applications,” submitted to J. Opt. Soc. Am. B (1986).
[CrossRef]

R. S. Longhurst, Geometrical and Physical Optics (Longman Group, London, 1973).

R. Petit, The Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, 1980).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Line narrowing of XeF using a multipass grating interferometer (MGI).

Fig. 2
Fig. 2

Geometry for studying the interference of waves in MGI.

Fig. 3
Fig. 3

(a) Wave vectors corresponding to the three diffracted beams from the grating and the notation for the amplitude efficiencies p and the phase shifts δ for the three diffracted beams (b) with the second-order Littrow incidence and (c) with the normal incidence.

Fig. 4
Fig. 4

Groove profile of the grating used to study the phase shifts in diffraction with the scalar diffraction theory.

Fig. 5
Fig. 5

Determining the phase shift in the beam which is coming from the second-order Littrow direction and diffracting normal to the grating.

Fig. 6
Fig. 6

Narrow bandwidth KrF laser cavity used in the experiments.

Fig. 7
Fig. 7

Fringes produced to the linenarrowed KrF laser beam by a Fabry-Perot etalon with the free spectral range of 0.11 cm−1.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

λ δ λ = m N ,
m λ = 2 d sin θ ,
δ ν ¯ g = 1 2 w tan θ ,
A p i 2 exp [ i ( 2 k i · r i + δ i 2 ) ]
A p m p i 1 p n 1 exp [ i ( 2 k i · r i + 2 k n · r n + δ m + δ i 1 + δ n 1 ) ] ,
A p m p i 1 p n 1 exp [ i ( 2 k i · r i + 2 k n · r n + δ m + δ i 1 + δ n 1 ) ] × { p m p n 0 exp [ i ( 2 k n · r n + δ m + δ n 0 ) ] } n - 1 .
A exp ( 2 i k i · r i ) { p i 2 exp ( i δ i 2 ) + p m p i 1 p n 1 exp [ i ( 2 k n · r n + δ m + δ i 1 + δ n 1 ) ] 1 - p m p n 0 exp [ i ( 2 k n · r n + δ m + δ n 0 ) ] } ,
δ ν ¯ f = 1 2 d ,
f = π ( p m p n 0 ) 1 / 2 1 - p m p n 0 .
A exp [ i ( k i · r i + k l · r l ) ] { p i 0 exp ( i δ i 0 ) + p m p i 1 p n - 1 exp [ i ( 2 k n · r n + δ m + δ i 1 + δ n - 1 ) ] 1 - p m p n 0 exp [ i ( 2 k n · r n + δ m + δ n 0 ) ] }
A 1 = A 0 C exp ( i δ c ) S ( cos θ 0 + cos θ 1 ) × exp [ i k ( r 0 + r 1 ) ] d S ,
{ δ i 0 = δ c δ i 1 = δ c δ i 2 = δ c             { δ n - 1 = δ c + π , δ n 0 = δ c , δ n 1 = δ c .
2 k n · r n + δ m + δ n 0 = 2 π m ,
A exp [ i ( k i · r i + k l · r l + δ c ) ] [ p i 0 - p m p i 1 p n - 1 1 - p m p n 0 ] .

Metrics