Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Snyder, “Laser Wavelength Meters,” Laser Focus 18, 55 (1982).
  2. M. B. Morris, T. J. McIlrath, J. J. Snyder, “Fizeau Wavemeter for Pulsed Laser Wavelength Measurement,” Appl. Opt. 23, 3862 (1984).
    [CrossRef] [PubMed]
  3. J. L. Gardner, “Compact Fizeau Wavemeter,” Appl. Opt. 24, 3570 (1985).
    [CrossRef] [PubMed]
  4. D. F. Gray, K. A. Smith, F. B. Dunning, “Simple Compact Fizeau Wavemeter,” Appl. Opt. 25, 1339 (1986).
    [CrossRef] [PubMed]
  5. J. L. Gardner, “Wavefront Curvature in a Fizeau Wavemeter,” Opt. Lett. 8, 91 (1983).
    [CrossRef] [PubMed]
  6. F. B. Dunning, Rice U., TX; private communication.

1986 (1)

1985 (1)

1984 (1)

1983 (1)

1982 (1)

J. J. Snyder, “Laser Wavelength Meters,” Laser Focus 18, 55 (1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Simplified representation of an off-axis Fizeau wavemeter.

Fig. 2
Fig. 2

Projections of the wavemeter in orthogonal planes showing the source S and its images S1 and S2 after reflection in the wedge faces.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

γ y = 2 α ( s - e ) / ( s + d ) ,
γ y = 2 α / ( 1 + d / s )
γ x ~ tan γ x = e sin 2 θ s + d + 2 e ( 1 - cos 2 θ ) ,
γ x = e sin 2 θ / s ,
γ = γ y cos ξ + γ x sin ξ = 2 α 1 + d / s · cos ξ + e sin 2 θ s sin ξ .
s ( λ / γ ) = 0 γ s = 0.
tan ξ = 2 α d e sin 2 θ .

Metrics