## Abstract

The slit function of a double monochromator has been studied using a dye laser and a few ion laser lines. The value of the slit function is about 9 orders of magnitude below the peak at 300 nm from the line center. The difference between the slit function obtained by the monochromator scanning over a fixed spectral line and that obtained by tuning a spectral line through a fixed monochromator setting is found to be negligible for all but the most demanding applications. Also reported is a prominent structure in the slit function which is attributed to the intermediate slit of the instrument.

© 1986 Optical Society of America

Full Article |

PDF Article
### Equations (7)

Equations on this page are rendered with MathJax. Learn more.

(1)
$${S}_{M}({\mathrm{\lambda}}_{0},\mathrm{\lambda};t)=\int {L}_{\mathrm{\lambda}}(\mathrm{\lambda},{\mathrm{\lambda}}^{\prime};t)\xb7R({\mathrm{\lambda}}_{0},{\mathrm{\lambda}}^{\prime})\xb7d{\mathrm{\lambda}}^{\prime}.$$
(2)
$${L}_{\mathrm{\lambda}}(\mathrm{\lambda},{\mathrm{\lambda}}^{\prime};t)={L}_{\mathrm{\lambda}}^{0}(\mathrm{\lambda};t)\xb7\delta (\mathrm{\lambda}-{\mathrm{\lambda}}^{\prime}).$$
(3)
$${S}_{M}({\mathrm{\lambda}}_{0},\mathrm{\lambda};t)={L}_{\mathrm{\lambda}}^{0}(\mathrm{\lambda};t)\xb7{R}_{f}(\mathrm{\lambda})\xb7Z({\mathrm{\lambda}}_{0},\mathrm{\lambda}).$$
(4)
$${S}_{D}(\mathrm{\lambda};t)={R}_{D}(\mathrm{\lambda})\xb7{L}_{\mathrm{\lambda}}^{0}(\mathrm{\lambda};t),$$
(5)
$$Z({\mathrm{\lambda}}_{0},\mathrm{\lambda})=[{S}_{M}({\mathrm{\lambda}}_{0},\mathrm{\lambda};t)/{S}_{D}(\mathrm{\lambda};t)]\xb7[{R}_{D}(\mathrm{\lambda})/{R}_{f}(\mathrm{\lambda})].$$
(6)
$$M({\mathrm{\lambda}}_{0},\mathrm{\lambda})={S}_{M}({\mathrm{\lambda}}_{0},\mathrm{\lambda};t)/{S}_{D}(\mathrm{\lambda};t)$$
(7)
$$Z({\mathrm{\lambda}}_{0},\mathrm{\lambda})=M({\mathrm{\lambda}}_{0},\mathrm{\lambda})/M(\mathrm{\lambda},\mathrm{\lambda})$$