Abstract

A proximity-focused image intensifier, fiber optically coupled to a charge-coupled device, forms a compact and adaptable detector system, an ICCD, that is useful over an extraordinarily wide range of input intensities. For critical photometric applications, persistence in the glowfrom the phosphor of the image intensifier must be taken into account. A model of persistence can help in understanding the capabilities and limitations of the detector and in designing experiments using it. The model can also be used to derive photometric correctionsfor persistence. The necessityfor photometric corrections for persistence can often be avoided by careful experimental design.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Curie, Luminescence in Crystals, translated by G. F. J. Garlick (Methuen, London, 1963).
  2. J. J. Donaghue, K. E. Davis, “Wide Range Measurements of Cathodoluminescence,” J. Electrochem. Soc. Solid State Sci. 115, 85 (1968).
  3. J. McNall, L. Robinson, J. Wampler, “The Response of Phosphor Output Image Intensifiers to Single-Photon Inputs,” Publ. Astron. Soc. Pac. 82, 837 (1970).
    [CrossRef]
  4. J. E. Horn, M. J. McCutcheon, “Decay Time of Some Image Tube Phosphors as a Function of Excitation Time,” Proc. IEEE, 592 (April1970).
    [CrossRef]
  5. S. R. Smith, J. L. Lowrance, “Single Photoelectron Excitation of Phosphors,” Pub. Astron. Soc. Pac. 84, 154 (Feb.1972).
    [CrossRef]
  6. R. J. Fonck, A. T. Ramsey, R. V. Yelle, “Multichannel Grazing Incidence Spectrometer for Plasma Impurity Diagnosis: SPRED,” Appl. Opt. 21, 2115 (1982).
    [CrossRef] [PubMed]
  7. G. D. Schmidt, “The Effects of Phosphor Decay on Time-Modulated Measurements made with Image-Tube Systems,” Publ. Astron. Soc. Pac. 91, 399 (1979).
    [CrossRef]
  8. C. I. Coleman, “Properties of P-11 Phosphors used in Image Converters,” in Preprints of Papers to be Presented at the Seventh Symposium on Photo-Electronic Image Devices, D. McMullan, B. L. Morgan Eds. (Blackett Laboratory, Imperial College, London, 1978).
  9. P. Demaayer, R. Bollen, Long Term Persistency of X-Ray Intensifying Phosphor Screens,” J. Electrochem. Soc. Solid State Sci. Technol. 130, 437 (1983).
  10. M. Torr, “Persistence of Phosphor Glow in Microchannel Plate Image Intensifiers,” Appl. Opt. 24, 793 (1985).
    [CrossRef] [PubMed]
  11. C. R. Lynds, R. I. Aikens, “A Spectrophotometric Scanner Capable of High Signal-to-Noise Ratios,” Publ. Astron. Soc. Pac. 77, 347 (1965).
    [CrossRef]
  12. A. Bril, W. van Meurs-Hoekstra, “Properties of the Fluorescence of Some N.B.S. Standard Phosphors,” Philips Res. Rep. 19, 296 (1964).
  13. H. W. Leverenz, An Introduction to the Luminescence of Solids (Wiley, New York, 1950).

1985 (1)

1983 (1)

P. Demaayer, R. Bollen, Long Term Persistency of X-Ray Intensifying Phosphor Screens,” J. Electrochem. Soc. Solid State Sci. Technol. 130, 437 (1983).

1982 (1)

1979 (1)

G. D. Schmidt, “The Effects of Phosphor Decay on Time-Modulated Measurements made with Image-Tube Systems,” Publ. Astron. Soc. Pac. 91, 399 (1979).
[CrossRef]

1972 (1)

S. R. Smith, J. L. Lowrance, “Single Photoelectron Excitation of Phosphors,” Pub. Astron. Soc. Pac. 84, 154 (Feb.1972).
[CrossRef]

1970 (2)

J. McNall, L. Robinson, J. Wampler, “The Response of Phosphor Output Image Intensifiers to Single-Photon Inputs,” Publ. Astron. Soc. Pac. 82, 837 (1970).
[CrossRef]

J. E. Horn, M. J. McCutcheon, “Decay Time of Some Image Tube Phosphors as a Function of Excitation Time,” Proc. IEEE, 592 (April1970).
[CrossRef]

1968 (1)

J. J. Donaghue, K. E. Davis, “Wide Range Measurements of Cathodoluminescence,” J. Electrochem. Soc. Solid State Sci. 115, 85 (1968).

1965 (1)

C. R. Lynds, R. I. Aikens, “A Spectrophotometric Scanner Capable of High Signal-to-Noise Ratios,” Publ. Astron. Soc. Pac. 77, 347 (1965).
[CrossRef]

1964 (1)

A. Bril, W. van Meurs-Hoekstra, “Properties of the Fluorescence of Some N.B.S. Standard Phosphors,” Philips Res. Rep. 19, 296 (1964).

Aikens, R. I.

C. R. Lynds, R. I. Aikens, “A Spectrophotometric Scanner Capable of High Signal-to-Noise Ratios,” Publ. Astron. Soc. Pac. 77, 347 (1965).
[CrossRef]

Bollen, R.

P. Demaayer, R. Bollen, Long Term Persistency of X-Ray Intensifying Phosphor Screens,” J. Electrochem. Soc. Solid State Sci. Technol. 130, 437 (1983).

Bril, A.

A. Bril, W. van Meurs-Hoekstra, “Properties of the Fluorescence of Some N.B.S. Standard Phosphors,” Philips Res. Rep. 19, 296 (1964).

Coleman, C. I.

C. I. Coleman, “Properties of P-11 Phosphors used in Image Converters,” in Preprints of Papers to be Presented at the Seventh Symposium on Photo-Electronic Image Devices, D. McMullan, B. L. Morgan Eds. (Blackett Laboratory, Imperial College, London, 1978).

Curie, D.

D. Curie, Luminescence in Crystals, translated by G. F. J. Garlick (Methuen, London, 1963).

Davis, K. E.

J. J. Donaghue, K. E. Davis, “Wide Range Measurements of Cathodoluminescence,” J. Electrochem. Soc. Solid State Sci. 115, 85 (1968).

Demaayer, P.

P. Demaayer, R. Bollen, Long Term Persistency of X-Ray Intensifying Phosphor Screens,” J. Electrochem. Soc. Solid State Sci. Technol. 130, 437 (1983).

Donaghue, J. J.

J. J. Donaghue, K. E. Davis, “Wide Range Measurements of Cathodoluminescence,” J. Electrochem. Soc. Solid State Sci. 115, 85 (1968).

Fonck, R. J.

Horn, J. E.

J. E. Horn, M. J. McCutcheon, “Decay Time of Some Image Tube Phosphors as a Function of Excitation Time,” Proc. IEEE, 592 (April1970).
[CrossRef]

Leverenz, H. W.

H. W. Leverenz, An Introduction to the Luminescence of Solids (Wiley, New York, 1950).

Lowrance, J. L.

S. R. Smith, J. L. Lowrance, “Single Photoelectron Excitation of Phosphors,” Pub. Astron. Soc. Pac. 84, 154 (Feb.1972).
[CrossRef]

Lynds, C. R.

C. R. Lynds, R. I. Aikens, “A Spectrophotometric Scanner Capable of High Signal-to-Noise Ratios,” Publ. Astron. Soc. Pac. 77, 347 (1965).
[CrossRef]

McCutcheon, M. J.

J. E. Horn, M. J. McCutcheon, “Decay Time of Some Image Tube Phosphors as a Function of Excitation Time,” Proc. IEEE, 592 (April1970).
[CrossRef]

McNall, J.

J. McNall, L. Robinson, J. Wampler, “The Response of Phosphor Output Image Intensifiers to Single-Photon Inputs,” Publ. Astron. Soc. Pac. 82, 837 (1970).
[CrossRef]

Ramsey, A. T.

Robinson, L.

J. McNall, L. Robinson, J. Wampler, “The Response of Phosphor Output Image Intensifiers to Single-Photon Inputs,” Publ. Astron. Soc. Pac. 82, 837 (1970).
[CrossRef]

Schmidt, G. D.

G. D. Schmidt, “The Effects of Phosphor Decay on Time-Modulated Measurements made with Image-Tube Systems,” Publ. Astron. Soc. Pac. 91, 399 (1979).
[CrossRef]

Smith, S. R.

S. R. Smith, J. L. Lowrance, “Single Photoelectron Excitation of Phosphors,” Pub. Astron. Soc. Pac. 84, 154 (Feb.1972).
[CrossRef]

Torr, M.

van Meurs-Hoekstra, W.

A. Bril, W. van Meurs-Hoekstra, “Properties of the Fluorescence of Some N.B.S. Standard Phosphors,” Philips Res. Rep. 19, 296 (1964).

Wampler, J.

J. McNall, L. Robinson, J. Wampler, “The Response of Phosphor Output Image Intensifiers to Single-Photon Inputs,” Publ. Astron. Soc. Pac. 82, 837 (1970).
[CrossRef]

Yelle, R. V.

Appl. Opt. (2)

J. Electrochem. Soc. Solid State Sci. (1)

J. J. Donaghue, K. E. Davis, “Wide Range Measurements of Cathodoluminescence,” J. Electrochem. Soc. Solid State Sci. 115, 85 (1968).

J. Electrochem. Soc. Solid State Sci. Technol. (1)

P. Demaayer, R. Bollen, Long Term Persistency of X-Ray Intensifying Phosphor Screens,” J. Electrochem. Soc. Solid State Sci. Technol. 130, 437 (1983).

Philips Res. Rep. (1)

A. Bril, W. van Meurs-Hoekstra, “Properties of the Fluorescence of Some N.B.S. Standard Phosphors,” Philips Res. Rep. 19, 296 (1964).

Proc. IEEE (1)

J. E. Horn, M. J. McCutcheon, “Decay Time of Some Image Tube Phosphors as a Function of Excitation Time,” Proc. IEEE, 592 (April1970).
[CrossRef]

Pub. Astron. Soc. Pac. (1)

S. R. Smith, J. L. Lowrance, “Single Photoelectron Excitation of Phosphors,” Pub. Astron. Soc. Pac. 84, 154 (Feb.1972).
[CrossRef]

Publ. Astron. Soc. Pac. (3)

J. McNall, L. Robinson, J. Wampler, “The Response of Phosphor Output Image Intensifiers to Single-Photon Inputs,” Publ. Astron. Soc. Pac. 82, 837 (1970).
[CrossRef]

G. D. Schmidt, “The Effects of Phosphor Decay on Time-Modulated Measurements made with Image-Tube Systems,” Publ. Astron. Soc. Pac. 91, 399 (1979).
[CrossRef]

C. R. Lynds, R. I. Aikens, “A Spectrophotometric Scanner Capable of High Signal-to-Noise Ratios,” Publ. Astron. Soc. Pac. 77, 347 (1965).
[CrossRef]

Other (3)

H. W. Leverenz, An Introduction to the Luminescence of Solids (Wiley, New York, 1950).

C. I. Coleman, “Properties of P-11 Phosphors used in Image Converters,” in Preprints of Papers to be Presented at the Seventh Symposium on Photo-Electronic Image Devices, D. McMullan, B. L. Morgan Eds. (Blackett Laboratory, Imperial College, London, 1978).

D. Curie, Luminescence in Crystals, translated by G. F. J. Garlick (Methuen, London, 1963).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the experiment that has been mod eled in this investigation of the effects of phosphor persistence.

Fig. 2
Fig. 2

Phosphor emission rate as a function of time after excitation is removed. The rate is referred to the average rate during the 10- or 20-s excitation of the phosphor by electrons. The solid curve shows a parametrization of the decay generated from the parameters in Table I and Eqs. (1)(9).

Fig. 3
Fig. 3

Total charge S and charge P due to previous excitation and their ratio as a function of integration time. These curves were computed from the parameters in Table I and Eqs. (7) and (10) and correspond to the situation diagrammed in Fig. 1.

Fig. 4
Fig. 4

Quantities bearing on the statistical properties of the detector system as a function of integration time. These curves were computed for an input rate of 10 photoevents pixel−1 sec−1 and a system gain of 100 e photoevent−1.

Fig. 5
Fig. 5

Intensifier output as a function of temperature. The decrease with temperature is probably due to temperature dependence of the phosphor efficiency. Efficiency decreases by a factor of 2 with a 40°C temperature rise.

Fig. 6
Fig. 6

Persistence as a function of temperature. The decrease with temperature is probably due to a change in lifetime of the shorter-lived states with temperature. The excitation and integration profiles used in the measurement are shown in the inset.

Tables (1)

Tables Icon

Table I Decay Parameters for an Image Intensifier Tube, P-20 phosphor, −30°C

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

I ( t m ) = i = 1 N A k i exp ( - t m - t τ i ) ,
Q ( t m ) = t 0 t x I ( t m ) d t ,
Q ( t m ) = A i = 1 N k i t 0 t x exp ( - t m - t τ i ) d t .
Q 1 ( t m ) = A i = 1 N k i τ i [ 1 - exp ( - t m - t 0 τ i ) ] ;
Q 2 ( t m ) = A i = 1 N k i τ i exp ( - t m τ i ) [ exp ( t e τ i ) - exp ( t 0 τ i ) ] .
Q 1 ( t m ) = A i = 1 N k i τ i [ 1 - exp ( - t m τ i ) ] ,
Q 2 ( t m ) = A i = 1 N k i τ i exp ( - t m τ i ) [ exp ( t e τ i ) - 1 ] .
Q = A i = 1 N k i τ i
T = t e A i = 1 N k i τ i
S = t f A i = 1 N k i τ i .
Q 2 ( t m ) = A i = l N k i τ i exp ( - t m τ i ) ,
P = t a t b Q 2 ( t m ) d t m = A i = 1 N k i t a t b τ i exp ( - t m τ i ) d t m .
P 1 = A i = 1 N k i τ i 2 [ 1 - exp ( - t f τ i ) ] .
σ C = a 2 n t f ( e - pixel - 1 read - 1 ) .
σ L = t f L ,
P ( j ) = i = 1 j - 1 ρ ( i ) C ( j - 1 ) ,
C ( j ) = S ( j ) - P ( j ) .
τ = 1 S exp ( ɛ k t ) ,

Metrics