Abstract

We study the effect of texturing on the optical properties and performance of PIN-type a-Si:H photovoltaic cells. We use a doubly periodic texture profile with the period of the texturing being finer than visible wavelengths and its depth comparable to the period. We consider the effects of texturing various individual interfaces in the cell as well as those of simultaneously texturing two interfaces. In the latter case, we compare the effects of inphase and out-of-phase texturing. We give curves showing the variation of absorbed energy with both wavelength and depth in the cell (at a fixed wavelength). We demonstrate that, in the case of appropriate conformal roughening, the efficiency of a cell may be increased from 10.0 to 12.0%.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. L. Dalal, “Design Considerations for a-Si Solar Cells,” IEEE Trans. Electron Devices 27, 662 (1980).
    [CrossRef]
  2. K. Shirahata, Y. Yukimoto, “New Structure Photovoltaic Devices,” in J.A.R.E.C.T. Amorphous Semiconductor Technologies and Devices, Y. Hamakawa, Ed. (North-Holland, Amsterdam, 1982), pp. 177–198.
  3. E. Yablonovich, G. D. Cody, “Intensity Enhancement in Textured Optical Sheets for Solar Cells,” IEEE Trans. Electron Devices 29, 300 (1982).
    [CrossRef]
  4. H. W. Deckman, C. R. Wronski, H. Witzke, E. Yablonovitch, “Optically Enhanced Amorphous Silicon Solar Cells,” Appl. Phys. Lett. 42, 968 (1983).
    [CrossRef]
  5. Y. Hamakawa, H. Okamoto, “Device Physics and Optimum Design of the Amorphous Silicon Solar Cells,” in J.A.R.E.C.T. Amorphous Semiconductor Technologies and Devices, Y. Hamakawa, Ed. (North-Holland, Amsterdam, 1983), pp. 182–203.
  6. Y. Uchida, “P-I-N and N-I-P Basis Solar Cells,” in Amorphous Semiconductor Technologies and Devices, Y. Hamakawa, Ed. (North-Holland, Amsterdam, 1984), pp. 180–199.
  7. G. H. Derrick, R. C. McPhedran, D. R. McKenzie, “Textured Amorphous Silicon Solar Cells,” in Proceedings, Intersol 85, E. Bilgen, K. G. Terry-Hollands, Eds. (Pergamon, Oxford, 1985), pp. 1568–1572.
  8. G. H. Derrick, R. C. McPhedran, D. Maystre, M. Nevière, “Crossed Gratings: A Theory and its Applications,” Appl. Phys. 18, 39 (1979).
    [CrossRef]
  9. R. C. McPhedran, G. H. Derrick, M. Nevière, D. Maystre, “Metallic Crossed Gratings,” J. Opt. Paris 13, 209 (1982).
    [CrossRef]
  10. G. H. Derrick, R. C. McPhedran, “Coated Crossed Gratings,” J. Opt. Paris 15, 69 (1984).
    [CrossRef]
  11. G. H. Derrick, R. C. McPhedran, D. Maystre, M. Nevière, “A Theory for Crossed Gratings of Finite Conductivity,” Report TP78-1 (U. Sydney, Sydney, Australia, 1979).
  12. A. M. Glass, P. F. Liao, A. M. Johnson, L. M. Humphrey, R. Lemons, D. H. Olson, M. B. Stern, “Periodically Structured Amorphous Silicon Detectors with Improved Picosecond Responsivity,” Appl. Phys. Lett. 44, 77 (1984).
    [CrossRef]
  13. D. R. McKenzie, N. Savvides, R. C. McPhedran, D. R. Mills, “Low Emittance Coatings for High Temperature Solar Collectors,” Proc. Soc. Photo-Opt. Instrum. Eng. 428, 166 (1983).
  14. I. Hamberg, C. G. Granqvist, “Optical Properties of Transparent and Heat-Reflecting Indium-Tin-Oxide Films: Experimental Data and Theoretical Analysis,” Proc. Soc. Photo-Opt. Instrum. Eng. 428, 2 (1983).
  15. D. R. McKenzie, G. B. Smith, “Amorphous Silicon Solar Cells Produced by a D. C. Magnetron Glow Discharge Technique,” Appl. Surf. Sci. 22/23, 891 (1985).
    [CrossRef]
  16. T. Yamaguchi, H. Okamoto, S. Nonomura, Y. Hamakawa, “Study of Drift Type Photovoltaic Effect in Amorphous Silicon p-i-n Junction Structure,” Jpn. J. Appl. Phys. Suppl. 20-2, 191 (1981).
  17. R. S. Crandall, “Transport in Hydrogenated Amorphous Silicon p-i-n Solar Cells,” J. Appl. Phys. 53, 3350 (1982).
    [CrossRef]
  18. A. Catalano et al.., referenced in D. E. Carlson, “Solar Cells, Semiconduct. Semimetals21, “Hydrogenated Amorphous Silicon,” J. I. Pankove, Ed. part D, “Device Applications” (1984), p. 7.

1985

D. R. McKenzie, G. B. Smith, “Amorphous Silicon Solar Cells Produced by a D. C. Magnetron Glow Discharge Technique,” Appl. Surf. Sci. 22/23, 891 (1985).
[CrossRef]

1984

G. H. Derrick, R. C. McPhedran, “Coated Crossed Gratings,” J. Opt. Paris 15, 69 (1984).
[CrossRef]

A. M. Glass, P. F. Liao, A. M. Johnson, L. M. Humphrey, R. Lemons, D. H. Olson, M. B. Stern, “Periodically Structured Amorphous Silicon Detectors with Improved Picosecond Responsivity,” Appl. Phys. Lett. 44, 77 (1984).
[CrossRef]

1983

D. R. McKenzie, N. Savvides, R. C. McPhedran, D. R. Mills, “Low Emittance Coatings for High Temperature Solar Collectors,” Proc. Soc. Photo-Opt. Instrum. Eng. 428, 166 (1983).

I. Hamberg, C. G. Granqvist, “Optical Properties of Transparent and Heat-Reflecting Indium-Tin-Oxide Films: Experimental Data and Theoretical Analysis,” Proc. Soc. Photo-Opt. Instrum. Eng. 428, 2 (1983).

H. W. Deckman, C. R. Wronski, H. Witzke, E. Yablonovitch, “Optically Enhanced Amorphous Silicon Solar Cells,” Appl. Phys. Lett. 42, 968 (1983).
[CrossRef]

1982

E. Yablonovich, G. D. Cody, “Intensity Enhancement in Textured Optical Sheets for Solar Cells,” IEEE Trans. Electron Devices 29, 300 (1982).
[CrossRef]

R. C. McPhedran, G. H. Derrick, M. Nevière, D. Maystre, “Metallic Crossed Gratings,” J. Opt. Paris 13, 209 (1982).
[CrossRef]

R. S. Crandall, “Transport in Hydrogenated Amorphous Silicon p-i-n Solar Cells,” J. Appl. Phys. 53, 3350 (1982).
[CrossRef]

1981

T. Yamaguchi, H. Okamoto, S. Nonomura, Y. Hamakawa, “Study of Drift Type Photovoltaic Effect in Amorphous Silicon p-i-n Junction Structure,” Jpn. J. Appl. Phys. Suppl. 20-2, 191 (1981).

1980

V. L. Dalal, “Design Considerations for a-Si Solar Cells,” IEEE Trans. Electron Devices 27, 662 (1980).
[CrossRef]

1979

G. H. Derrick, R. C. McPhedran, D. Maystre, M. Nevière, “Crossed Gratings: A Theory and its Applications,” Appl. Phys. 18, 39 (1979).
[CrossRef]

Carlson, D. E.

A. Catalano et al.., referenced in D. E. Carlson, “Solar Cells, Semiconduct. Semimetals21, “Hydrogenated Amorphous Silicon,” J. I. Pankove, Ed. part D, “Device Applications” (1984), p. 7.

Catalano, A.

A. Catalano et al.., referenced in D. E. Carlson, “Solar Cells, Semiconduct. Semimetals21, “Hydrogenated Amorphous Silicon,” J. I. Pankove, Ed. part D, “Device Applications” (1984), p. 7.

Cody, G. D.

E. Yablonovich, G. D. Cody, “Intensity Enhancement in Textured Optical Sheets for Solar Cells,” IEEE Trans. Electron Devices 29, 300 (1982).
[CrossRef]

Crandall, R. S.

R. S. Crandall, “Transport in Hydrogenated Amorphous Silicon p-i-n Solar Cells,” J. Appl. Phys. 53, 3350 (1982).
[CrossRef]

Dalal, V. L.

V. L. Dalal, “Design Considerations for a-Si Solar Cells,” IEEE Trans. Electron Devices 27, 662 (1980).
[CrossRef]

Deckman, H. W.

H. W. Deckman, C. R. Wronski, H. Witzke, E. Yablonovitch, “Optically Enhanced Amorphous Silicon Solar Cells,” Appl. Phys. Lett. 42, 968 (1983).
[CrossRef]

Derrick, G. H.

G. H. Derrick, R. C. McPhedran, “Coated Crossed Gratings,” J. Opt. Paris 15, 69 (1984).
[CrossRef]

R. C. McPhedran, G. H. Derrick, M. Nevière, D. Maystre, “Metallic Crossed Gratings,” J. Opt. Paris 13, 209 (1982).
[CrossRef]

G. H. Derrick, R. C. McPhedran, D. Maystre, M. Nevière, “Crossed Gratings: A Theory and its Applications,” Appl. Phys. 18, 39 (1979).
[CrossRef]

G. H. Derrick, R. C. McPhedran, D. R. McKenzie, “Textured Amorphous Silicon Solar Cells,” in Proceedings, Intersol 85, E. Bilgen, K. G. Terry-Hollands, Eds. (Pergamon, Oxford, 1985), pp. 1568–1572.

G. H. Derrick, R. C. McPhedran, D. Maystre, M. Nevière, “A Theory for Crossed Gratings of Finite Conductivity,” Report TP78-1 (U. Sydney, Sydney, Australia, 1979).

Glass, A. M.

A. M. Glass, P. F. Liao, A. M. Johnson, L. M. Humphrey, R. Lemons, D. H. Olson, M. B. Stern, “Periodically Structured Amorphous Silicon Detectors with Improved Picosecond Responsivity,” Appl. Phys. Lett. 44, 77 (1984).
[CrossRef]

Granqvist, C. G.

I. Hamberg, C. G. Granqvist, “Optical Properties of Transparent and Heat-Reflecting Indium-Tin-Oxide Films: Experimental Data and Theoretical Analysis,” Proc. Soc. Photo-Opt. Instrum. Eng. 428, 2 (1983).

Hamakawa, Y.

T. Yamaguchi, H. Okamoto, S. Nonomura, Y. Hamakawa, “Study of Drift Type Photovoltaic Effect in Amorphous Silicon p-i-n Junction Structure,” Jpn. J. Appl. Phys. Suppl. 20-2, 191 (1981).

Y. Hamakawa, H. Okamoto, “Device Physics and Optimum Design of the Amorphous Silicon Solar Cells,” in J.A.R.E.C.T. Amorphous Semiconductor Technologies and Devices, Y. Hamakawa, Ed. (North-Holland, Amsterdam, 1983), pp. 182–203.

Hamberg, I.

I. Hamberg, C. G. Granqvist, “Optical Properties of Transparent and Heat-Reflecting Indium-Tin-Oxide Films: Experimental Data and Theoretical Analysis,” Proc. Soc. Photo-Opt. Instrum. Eng. 428, 2 (1983).

Humphrey, L. M.

A. M. Glass, P. F. Liao, A. M. Johnson, L. M. Humphrey, R. Lemons, D. H. Olson, M. B. Stern, “Periodically Structured Amorphous Silicon Detectors with Improved Picosecond Responsivity,” Appl. Phys. Lett. 44, 77 (1984).
[CrossRef]

Johnson, A. M.

A. M. Glass, P. F. Liao, A. M. Johnson, L. M. Humphrey, R. Lemons, D. H. Olson, M. B. Stern, “Periodically Structured Amorphous Silicon Detectors with Improved Picosecond Responsivity,” Appl. Phys. Lett. 44, 77 (1984).
[CrossRef]

Lemons, R.

A. M. Glass, P. F. Liao, A. M. Johnson, L. M. Humphrey, R. Lemons, D. H. Olson, M. B. Stern, “Periodically Structured Amorphous Silicon Detectors with Improved Picosecond Responsivity,” Appl. Phys. Lett. 44, 77 (1984).
[CrossRef]

Liao, P. F.

A. M. Glass, P. F. Liao, A. M. Johnson, L. M. Humphrey, R. Lemons, D. H. Olson, M. B. Stern, “Periodically Structured Amorphous Silicon Detectors with Improved Picosecond Responsivity,” Appl. Phys. Lett. 44, 77 (1984).
[CrossRef]

Maystre, D.

R. C. McPhedran, G. H. Derrick, M. Nevière, D. Maystre, “Metallic Crossed Gratings,” J. Opt. Paris 13, 209 (1982).
[CrossRef]

G. H. Derrick, R. C. McPhedran, D. Maystre, M. Nevière, “Crossed Gratings: A Theory and its Applications,” Appl. Phys. 18, 39 (1979).
[CrossRef]

G. H. Derrick, R. C. McPhedran, D. Maystre, M. Nevière, “A Theory for Crossed Gratings of Finite Conductivity,” Report TP78-1 (U. Sydney, Sydney, Australia, 1979).

McKenzie, D. R.

D. R. McKenzie, G. B. Smith, “Amorphous Silicon Solar Cells Produced by a D. C. Magnetron Glow Discharge Technique,” Appl. Surf. Sci. 22/23, 891 (1985).
[CrossRef]

D. R. McKenzie, N. Savvides, R. C. McPhedran, D. R. Mills, “Low Emittance Coatings for High Temperature Solar Collectors,” Proc. Soc. Photo-Opt. Instrum. Eng. 428, 166 (1983).

G. H. Derrick, R. C. McPhedran, D. R. McKenzie, “Textured Amorphous Silicon Solar Cells,” in Proceedings, Intersol 85, E. Bilgen, K. G. Terry-Hollands, Eds. (Pergamon, Oxford, 1985), pp. 1568–1572.

McPhedran, R. C.

G. H. Derrick, R. C. McPhedran, “Coated Crossed Gratings,” J. Opt. Paris 15, 69 (1984).
[CrossRef]

D. R. McKenzie, N. Savvides, R. C. McPhedran, D. R. Mills, “Low Emittance Coatings for High Temperature Solar Collectors,” Proc. Soc. Photo-Opt. Instrum. Eng. 428, 166 (1983).

R. C. McPhedran, G. H. Derrick, M. Nevière, D. Maystre, “Metallic Crossed Gratings,” J. Opt. Paris 13, 209 (1982).
[CrossRef]

G. H. Derrick, R. C. McPhedran, D. Maystre, M. Nevière, “Crossed Gratings: A Theory and its Applications,” Appl. Phys. 18, 39 (1979).
[CrossRef]

G. H. Derrick, R. C. McPhedran, D. R. McKenzie, “Textured Amorphous Silicon Solar Cells,” in Proceedings, Intersol 85, E. Bilgen, K. G. Terry-Hollands, Eds. (Pergamon, Oxford, 1985), pp. 1568–1572.

G. H. Derrick, R. C. McPhedran, D. Maystre, M. Nevière, “A Theory for Crossed Gratings of Finite Conductivity,” Report TP78-1 (U. Sydney, Sydney, Australia, 1979).

Mills, D. R.

D. R. McKenzie, N. Savvides, R. C. McPhedran, D. R. Mills, “Low Emittance Coatings for High Temperature Solar Collectors,” Proc. Soc. Photo-Opt. Instrum. Eng. 428, 166 (1983).

Nevière, M.

R. C. McPhedran, G. H. Derrick, M. Nevière, D. Maystre, “Metallic Crossed Gratings,” J. Opt. Paris 13, 209 (1982).
[CrossRef]

G. H. Derrick, R. C. McPhedran, D. Maystre, M. Nevière, “Crossed Gratings: A Theory and its Applications,” Appl. Phys. 18, 39 (1979).
[CrossRef]

G. H. Derrick, R. C. McPhedran, D. Maystre, M. Nevière, “A Theory for Crossed Gratings of Finite Conductivity,” Report TP78-1 (U. Sydney, Sydney, Australia, 1979).

Nonomura, S.

T. Yamaguchi, H. Okamoto, S. Nonomura, Y. Hamakawa, “Study of Drift Type Photovoltaic Effect in Amorphous Silicon p-i-n Junction Structure,” Jpn. J. Appl. Phys. Suppl. 20-2, 191 (1981).

Okamoto, H.

T. Yamaguchi, H. Okamoto, S. Nonomura, Y. Hamakawa, “Study of Drift Type Photovoltaic Effect in Amorphous Silicon p-i-n Junction Structure,” Jpn. J. Appl. Phys. Suppl. 20-2, 191 (1981).

Y. Hamakawa, H. Okamoto, “Device Physics and Optimum Design of the Amorphous Silicon Solar Cells,” in J.A.R.E.C.T. Amorphous Semiconductor Technologies and Devices, Y. Hamakawa, Ed. (North-Holland, Amsterdam, 1983), pp. 182–203.

Olson, D. H.

A. M. Glass, P. F. Liao, A. M. Johnson, L. M. Humphrey, R. Lemons, D. H. Olson, M. B. Stern, “Periodically Structured Amorphous Silicon Detectors with Improved Picosecond Responsivity,” Appl. Phys. Lett. 44, 77 (1984).
[CrossRef]

Savvides, N.

D. R. McKenzie, N. Savvides, R. C. McPhedran, D. R. Mills, “Low Emittance Coatings for High Temperature Solar Collectors,” Proc. Soc. Photo-Opt. Instrum. Eng. 428, 166 (1983).

Shirahata, K.

K. Shirahata, Y. Yukimoto, “New Structure Photovoltaic Devices,” in J.A.R.E.C.T. Amorphous Semiconductor Technologies and Devices, Y. Hamakawa, Ed. (North-Holland, Amsterdam, 1982), pp. 177–198.

Smith, G. B.

D. R. McKenzie, G. B. Smith, “Amorphous Silicon Solar Cells Produced by a D. C. Magnetron Glow Discharge Technique,” Appl. Surf. Sci. 22/23, 891 (1985).
[CrossRef]

Stern, M. B.

A. M. Glass, P. F. Liao, A. M. Johnson, L. M. Humphrey, R. Lemons, D. H. Olson, M. B. Stern, “Periodically Structured Amorphous Silicon Detectors with Improved Picosecond Responsivity,” Appl. Phys. Lett. 44, 77 (1984).
[CrossRef]

Uchida, Y.

Y. Uchida, “P-I-N and N-I-P Basis Solar Cells,” in Amorphous Semiconductor Technologies and Devices, Y. Hamakawa, Ed. (North-Holland, Amsterdam, 1984), pp. 180–199.

Witzke, H.

H. W. Deckman, C. R. Wronski, H. Witzke, E. Yablonovitch, “Optically Enhanced Amorphous Silicon Solar Cells,” Appl. Phys. Lett. 42, 968 (1983).
[CrossRef]

Wronski, C. R.

H. W. Deckman, C. R. Wronski, H. Witzke, E. Yablonovitch, “Optically Enhanced Amorphous Silicon Solar Cells,” Appl. Phys. Lett. 42, 968 (1983).
[CrossRef]

Yablonovich, E.

E. Yablonovich, G. D. Cody, “Intensity Enhancement in Textured Optical Sheets for Solar Cells,” IEEE Trans. Electron Devices 29, 300 (1982).
[CrossRef]

Yablonovitch, E.

H. W. Deckman, C. R. Wronski, H. Witzke, E. Yablonovitch, “Optically Enhanced Amorphous Silicon Solar Cells,” Appl. Phys. Lett. 42, 968 (1983).
[CrossRef]

Yamaguchi, T.

T. Yamaguchi, H. Okamoto, S. Nonomura, Y. Hamakawa, “Study of Drift Type Photovoltaic Effect in Amorphous Silicon p-i-n Junction Structure,” Jpn. J. Appl. Phys. Suppl. 20-2, 191 (1981).

Yukimoto, Y.

K. Shirahata, Y. Yukimoto, “New Structure Photovoltaic Devices,” in J.A.R.E.C.T. Amorphous Semiconductor Technologies and Devices, Y. Hamakawa, Ed. (North-Holland, Amsterdam, 1982), pp. 177–198.

Appl. Phys.

G. H. Derrick, R. C. McPhedran, D. Maystre, M. Nevière, “Crossed Gratings: A Theory and its Applications,” Appl. Phys. 18, 39 (1979).
[CrossRef]

Appl. Phys. Lett.

H. W. Deckman, C. R. Wronski, H. Witzke, E. Yablonovitch, “Optically Enhanced Amorphous Silicon Solar Cells,” Appl. Phys. Lett. 42, 968 (1983).
[CrossRef]

A. M. Glass, P. F. Liao, A. M. Johnson, L. M. Humphrey, R. Lemons, D. H. Olson, M. B. Stern, “Periodically Structured Amorphous Silicon Detectors with Improved Picosecond Responsivity,” Appl. Phys. Lett. 44, 77 (1984).
[CrossRef]

Appl. Surf. Sci.

D. R. McKenzie, G. B. Smith, “Amorphous Silicon Solar Cells Produced by a D. C. Magnetron Glow Discharge Technique,” Appl. Surf. Sci. 22/23, 891 (1985).
[CrossRef]

IEEE Trans. Electron Devices

V. L. Dalal, “Design Considerations for a-Si Solar Cells,” IEEE Trans. Electron Devices 27, 662 (1980).
[CrossRef]

E. Yablonovich, G. D. Cody, “Intensity Enhancement in Textured Optical Sheets for Solar Cells,” IEEE Trans. Electron Devices 29, 300 (1982).
[CrossRef]

J. Appl. Phys.

R. S. Crandall, “Transport in Hydrogenated Amorphous Silicon p-i-n Solar Cells,” J. Appl. Phys. 53, 3350 (1982).
[CrossRef]

J. Opt. Paris

R. C. McPhedran, G. H. Derrick, M. Nevière, D. Maystre, “Metallic Crossed Gratings,” J. Opt. Paris 13, 209 (1982).
[CrossRef]

G. H. Derrick, R. C. McPhedran, “Coated Crossed Gratings,” J. Opt. Paris 15, 69 (1984).
[CrossRef]

Jpn. J. Appl. Phys. Suppl.

T. Yamaguchi, H. Okamoto, S. Nonomura, Y. Hamakawa, “Study of Drift Type Photovoltaic Effect in Amorphous Silicon p-i-n Junction Structure,” Jpn. J. Appl. Phys. Suppl. 20-2, 191 (1981).

Proc. Soc. Photo-Opt. Instrum. Eng.

D. R. McKenzie, N. Savvides, R. C. McPhedran, D. R. Mills, “Low Emittance Coatings for High Temperature Solar Collectors,” Proc. Soc. Photo-Opt. Instrum. Eng. 428, 166 (1983).

I. Hamberg, C. G. Granqvist, “Optical Properties of Transparent and Heat-Reflecting Indium-Tin-Oxide Films: Experimental Data and Theoretical Analysis,” Proc. Soc. Photo-Opt. Instrum. Eng. 428, 2 (1983).

Other

K. Shirahata, Y. Yukimoto, “New Structure Photovoltaic Devices,” in J.A.R.E.C.T. Amorphous Semiconductor Technologies and Devices, Y. Hamakawa, Ed. (North-Holland, Amsterdam, 1982), pp. 177–198.

A. Catalano et al.., referenced in D. E. Carlson, “Solar Cells, Semiconduct. Semimetals21, “Hydrogenated Amorphous Silicon,” J. I. Pankove, Ed. part D, “Device Applications” (1984), p. 7.

G. H. Derrick, R. C. McPhedran, D. Maystre, M. Nevière, “A Theory for Crossed Gratings of Finite Conductivity,” Report TP78-1 (U. Sydney, Sydney, Australia, 1979).

Y. Hamakawa, H. Okamoto, “Device Physics and Optimum Design of the Amorphous Silicon Solar Cells,” in J.A.R.E.C.T. Amorphous Semiconductor Technologies and Devices, Y. Hamakawa, Ed. (North-Holland, Amsterdam, 1983), pp. 182–203.

Y. Uchida, “P-I-N and N-I-P Basis Solar Cells,” in Amorphous Semiconductor Technologies and Devices, Y. Hamakawa, Ed. (North-Holland, Amsterdam, 1984), pp. 180–199.

G. H. Derrick, R. C. McPhedran, D. R. McKenzie, “Textured Amorphous Silicon Solar Cells,” in Proceedings, Intersol 85, E. Bilgen, K. G. Terry-Hollands, Eds. (Pergamon, Oxford, 1985), pp. 1568–1572.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Optical properties of thin sinusoidal bigratings in a-Si:H used with normally incident light as a function of wavelength in microns. The respective curves are - ■ - ■ -, transmittance T of a bigrating with h = 0.25 μm; - ● - ● -, transmittance of a bigrating with h = 0.15 μm; - ○ - ○ -, transmittance of an untextured a-Si:H film; - - ● - - ● - -, absorption A of a bigrating with h = 0.15 μm; - - ○ - - ○ - -, absorption of an untextured a-Si:H film.

Fig. 2
Fig. 2

Comparison of reflectance R as a function of wavelength for a bigrating, a classical grating used in its two principal planes of polarization (P and S), and an untextured thin film of a-Si:H. The respective curves are for: ○, an untextured system; ●, a bigrating with h = 0.15 μm; ■, a classical grating (h = 0.075 μm) used with P-polarized light; ◆, the same classical grating used with S-polarized light.

Fig. 3
Fig. 3

(A) Schematic diagram of a typical PIN-type solar cell showing a photon incident on the glass superstrate: (B)–(G) are simplified systems. (B) consists of an infinite glass incident medium, an ITO layer, and an infinite a-Si:H medium. (C) is the system of (B) with the two interfaces conformally roughened. (D) consists of an infinite ITO incident medium a layer of a-Si:H and an infinite silvermedium. (E),(F) are the systems of(D) with, respectively, the front and back interfaces roughened; (G),(H) are the system of (D) with, respectively, conformal and out-of-phase roughening of both interfaces.

Fig. 4
Fig. 4

Variation of F with wavelength: ●, for the roughened system of Fig. 3(C); ×, for the unroughened system of Fig. 3(B); +, F in the ITO layer alone for the system of Fig. 3(C).

Fig. 5
Fig. 5

Variation of F with wavelength for the system of Fig. 3(D),×, and that of Fig. 3(E), ●.

Fig. 6
Fig. 6

Variation of F with wavelength for the system of Fig. 3(D), ×, and that of Fig. 3(F), ●.

Fig. 7
Fig. 7

Variation of F with wavelength for the system of Fig. 3(D), ×, and that of Fig. 3(G), ●.

Fig. 8
Fig. 8

Variation of Φ (above) and Φ′ (below) with depth is compared for the systems of Fig. 3(C), ●, and Fig. 3(B) (×,+) (λ = 0.60 μm).

Fig. 9
Fig. 9

Variation of Φ (above) and Φ′ (below) with depth is compared for the systems of Fig. 3(E), ●, and of Fig. 3(D), + (λ = 0.50 μm).

Fig. 10
Fig. 10

As for Fig. 9 but now with a wavelength of 0.60 μm.

Fig. 11
Fig. 11

As for Fig. 10 but now with a wavelength of 0.70 μm.

Fig. 12
Fig. 12

Variation of Φ (above) and Φ′ (below) with depth for ■, the system of Fig. 3(F), ●, that of Fig. 3(G), and, ×, that of Fig. 3(H) (λ = 0.60 μm).

Tables (1)

Tables Icon

Table I Effect on Cell Efficiency Produced by Three Forms of Rougheninga

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

x 3 = t 2 + f u ( x 1 , x 2 ) ,
x 3 = - t 2 + f l ( x 1 , x 2 ) .
f u ( x 1 , x 2 ) = f l ( x 1 , x 2 ) ;
f u ( x 1 , x 2 ) = - f l ( x 1 , x 2 ) .
f u ( x 1 , x 2 ) = h 4 ( cos 2 π x 1 d + cos 2 π x 2 d ) ,
J = q G l c [ 1 - exp ( - d / l c ) ] ,
G = λ P ( λ ) Q ( λ ) F ( λ ) d λ h c .

Metrics